Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.
J Chem Theory Comput. 2021 Jul 13;17(7):3895-3907. doi: 10.1021/acs.jctc.1c00176. Epub 2021 Jun 8.
In this work, the discrete λ variant of the Gibbs sampler-based λ-dynamics (-GSλD) method is developed to enable multiple functional group perturbations to be investigated at one or more sites of substitution off a common ligand core. The theoretical framework and special considerations for constructing discrete λ states for multisite -GSλD are presented. The precision and accuracy of the -GSλD method is evaluated with three test cases of increasing complexity. Specifically, methyl → methyl symmetric perturbations in water, 1,4-benzene hydration free energies and protein-ligand binding affinities for an example HIV-1 reverse transcriptase inhibitor series are computed with -GSλD. Complementary MSλD calculations were also performed to compare with -GSλD's performance. Excellent agreement between -GSλD and MSλD is observed, with mean unsigned errors of 0.12 and 0.22 kcal/mol for computed hydration and binding free energy test cases, respectively. Good agreement with experiment is also observed, with errors of 0.5-0.7 kcal/mol. These findings support the applicability of the -GSλD free energy method for a variety of molecular design problems, including structure-based drug design. Finally, a discussion of -GSλD versus MSλD approaches is presented to compare and contrast features of both methods.
在这项工作中,开发了基于 Gibbs 采样器的 λ 动力学的离散 λ 变体(-GSλD)方法,以能够在共同配体核心的一个或多个取代位置处研究多个功能基团的扰动。提出了用于多位置 -GSλD 的构建离散 λ 态的理论框架和特殊考虑。通过三个越来越复杂的测试案例评估了 -GSλD 方法的精度和准确性。具体来说,使用 -GSλD 计算了水中甲基→甲基对称扰动、1,4-苯的水合自由能和 HIV-1 逆转录酶抑制剂系列的蛋白质-配体结合亲和力。还进行了互补的 MSλD 计算以与 -GSλD 的性能进行比较。-GSλD 和 MSλD 之间观察到极好的一致性,计算水合和结合自由能测试案例的平均未签名误差分别为 0.12 和 0.22 kcal/mol。与实验也观察到很好的一致性,误差为 0.5-0.7 kcal/mol。这些发现支持 -GSλD 自由能方法在各种分子设计问题中的适用性,包括基于结构的药物设计。最后,讨论了 -GSλD 与 MSλD 方法,以比较和对比两种方法的特点。