Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Autophagy. 2022 Feb;18(2):409-422. doi: 10.1080/15548627.2021.1936358. Epub 2021 Jun 8.
Macroautophagy/autophagy is emerging as a major pathway that regulates both aging and stem cell function. Previous studies have demonstrated a positive correlation of autophagy with longevity; however, these studies did not directly address the consequence of altered autophagy in stem cells during aging. In this study, we used knockin mice (designated as KI mice) with the F121A allele in the autophagy gene to investigate the consequences of enhanced autophagy in postnatal neural stem cells (NSCs) during aging. We found that increased autophagy protected NSCs from exhaustion and promoted neurogenesis in old (≥18-months-old) mice compared with age-matched wild-type (WT) mice, although it did not affect NSCs in young (3-months-old) mice. After pharmacologically-induced elimination of proliferative cells in the subventricular zone (SVZ), there was enhanced re-activation of quiescent NSCs in old KI mice as compared to those in WT mice, with more efficient exit from quiescent status to generate proliferative cells and neuroblasts. Moreover, there was also improved maintenance and increased neuronal differentiation of NSCs isolated from the SVZ of old KI mice in assays. Lastly, the increased neurogenesis in KI mice was associated with better olfactory function in aged animals. Together, our results suggest a protective role of increased autophagy in aging NSCs, which may help the development of novel strategies to treat age-related neurodegeneration. ATG: autophagy related; Baf A: bafilomycin A; : beclin 1; BrdU: bromodeoxyuridine/5-bromo-2'-deoxyuridine; DCX: doublecortin; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; H&E: hematoxylin and eosin; HSCs: hematopoietic stem cells; KI: knockin; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mo: month; NSCs: neural stem cells; OB: olfactory bulb; RB1CC1: RB1-inducible coiled-coil 1; ROS: reactive oxygen species; SOX2: SRY (sex determining region Y)-box 2; SGZ: subgranular zone; SVZ: subventricular zone; TMZ: temozolomide; WT: wild type.
自噬作为调节衰老和干细胞功能的主要途径正在兴起。先前的研究表明自噬与长寿呈正相关;然而,这些研究并没有直接解决衰老过程中干细胞中自噬改变的后果。在这项研究中,我们使用 F121A 等位基因在自噬基因中的 knockin 小鼠(命名为 KI 小鼠)来研究衰老过程中增强的自噬对出生后神经干细胞(NSCs)的影响。我们发现,与年龄匹配的野生型(WT)小鼠相比,增加自噬可保护 NSCs 免于衰竭并促进老年(≥18 个月)小鼠的神经发生,尽管它对年轻(3 个月)小鼠的 NSCs 没有影响。在用药物诱导脑室下区(SVZ)中的增殖细胞消除后,与 WT 小鼠相比,老年 KI 小鼠中静止 NSCs 的再激活增强,从静止状态退出以产生增殖细胞和神经前体细胞的效率更高。此外,在 测定中,来自 SVZ 的 NSCs 的分离物的维持和增殖分化也得到改善。最后,KI 小鼠中的神经发生增加与老年动物嗅觉功能的改善有关。总之,我们的结果表明,衰老 NSCs 中自噬的增加具有保护作用,这可能有助于开发治疗与年龄相关的神经退行性变的新策略。ATG:自噬相关;Baf A:巴弗霉素 A;:beclin 1;BrdU:溴脱氧尿苷/5-溴-2'-脱氧尿苷;DCX:双皮质蛋白;GFAP:神经胶质纤维酸性蛋白;GFP:绿色荧光蛋白;H&E:苏木精和伊红;HSCs:造血干细胞;KI:knockin;MAP1LC3B/LC3:微管相关蛋白 1 轻链 3 结合蛋白;mo:月;NSCs:神经干细胞;OB:嗅球;RB1CC1:RB1 诱导卷曲螺旋 1;ROS:活性氧;SOX2:SRY(性别决定区 Y)-盒 2;SGZ:颗粒下区;SVZ:脑室下区;TMZ:替莫唑胺;WT:野生型。