Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A.
Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A.
Biochem J. 2021 Jun 11;478(11):2051-2057. doi: 10.1042/BCJ20210211.
NaCT (SLC13A5) is a Na+-coupled transporter for citrate, which is expressed in the liver, brain, testes, and bone. It is the mammalian homolog of Drosophila INDY, a cation-independent transporter for citrate, whose partial loss extends lifespan in the organism. In humans, loss-of-function mutations in NaCT cause a disease with severe neurological dysfunction, characterized by neonatal epilepsy and delayed brain development. In contrast with humans, deletion of NaCT in mice results in a beneficial metabolic phenotype with protection against diet-induced obesity and metabolic syndrome; the brain dysfunction is not readily noticeable. The disease-causing mutations are located in different regions of human NaCT protein, suggesting that different mutations might have different mechanisms for the loss of function. The beneficial effects of NaCT loss in the liver versus the detrimental effects of NaCT loss in the brain provide an opportunity to design high-affinity inhibitors for the transporter that do not cross the blood-brain barrier so that only the beneficial effects could be harnessed. To realize these goals, we need a detailed knowledge of the 3D structure of human NaCT. The recent report by Sauer et al. in Nature describing the cryo-EM structure of human NaCT represents such a milestone, paving the way for a better understanding of the structure-function relationship for this interesting and clinically important transporter.
NaCT(SLC13A5)是一种用于转运柠檬酸的 Na+偶联转运体,在肝脏、大脑、睾丸和骨骼中表达。它是果蝇 INDY 的哺乳动物同源物,INDY 是一种用于转运柠檬酸的阳离子非依赖性转运体,其部分缺失可延长生物体的寿命。在人类中,NaCT 的功能丧失性突变导致一种严重神经功能障碍的疾病,其特征为新生儿癫痫发作和大脑发育迟缓。与人类不同的是,小鼠中 NaCT 的缺失导致有益的代谢表型,可预防饮食诱导的肥胖和代谢综合征;大脑功能障碍不易察觉。致病突变位于人类 NaCT 蛋白的不同区域,这表明不同的突变可能具有不同的功能丧失机制。NaCT 在肝脏中的缺失具有有益效果,而在大脑中的缺失具有有害影响,这为设计对转运体具有高亲和力且不能穿过血脑屏障的抑制剂提供了机会,从而只利用有益效果。为了实现这些目标,我们需要详细了解人类 NaCT 的 3D 结构。Sauer 等人最近在《自然》杂志上发表的报告描述了人类 NaCT 的冷冻电镜结构,这代表了一个里程碑,为更好地理解这种有趣且具有临床重要性的转运体的结构-功能关系铺平了道路。