Suppr超能文献

使用机器学习通过多期计算机断层血管造影对急性缺血性卒中患者的缺血脑组织命运进行自动预测。

Automated Prediction of Ischemic Brain Tissue Fate from Multiphase Computed Tomographic Angiography in Patients with Acute Ischemic Stroke Using Machine Learning.

作者信息

Qiu Wu, Kuang Hulin, Ospel Johanna M, Hill Michael D, Demchuk Andrew M, Goyal Mayank, Menon Bijoy K

机构信息

Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.

Department of Radiology, University of Calgary, Calgary, AB, Canada.

出版信息

J Stroke. 2021 May;23(2):234-243. doi: 10.5853/jos.2020.05064. Epub 2021 May 31.

Abstract

BACKGROUND AND PURPOSE

Multiphase computed tomographic angiography (mCTA) provides time variant images of pial vasculature supplying brain in patients with acute ischemic stroke (AIS). To develop a machine learning (ML) technique to predict tissue perfusion and infarction from mCTA source images.

METHODS

284 patients with AIS were included from the Precise and Rapid assessment of collaterals using multi-phase CTA in the triage of patients with acute ischemic stroke for Intra-artery Therapy (Prove-IT) study. All patients had non-contrast computed tomography, mCTA, and computed tomographic perfusion (CTP) at baseline and follow-up magnetic resonance imaging/non-contrast-enhanced computed tomography. Of the 284 patient images, 140 patient images were randomly selected to train and validate three ML models to predict a pre-defined Tmax thresholded perfusion abnormality, core and penumbra on CTP. The remaining 144 patient images were used to test the ML models. The predicted perfusion, core and penumbra lesions from ML models were compared to CTP perfusion lesion and to follow-up infarct using Bland-Altman plots, concordance correlation coefficient (CCC), intra-class correlation coefficient (ICC), and Dice similarity coefficient.

RESULTS

Mean difference between the mCTA predicted perfusion volume and CTP perfusion volume was 4.6 mL (limit of agreement [LoA], -53 to 62.1 mL; P=0.56; CCC 0.63 [95% confidence interval [CI], 0.53 to 0.71; P<0.01], ICC 0.68 [95% CI, 0.58 to 0.78; P<0.001]). Mean difference between the mCTA predicted infarct and follow-up infarct in the 100 patients with acute reperfusion (modified thrombolysis in cerebral infarction [mTICI] 2b/2c/3) was 21.7 mL, while it was 3.4 mL in the 44 patients not achieving reperfusion (mTICI 0/1). Amongst reperfused subjects, CCC was 0.4 (95% CI, 0.15 to 0.55; P<0.01) and ICC was 0.42 (95% CI, 0.18 to 0.50; P<0.01); in non-reperfused subjects CCC was 0.52 (95% CI, 0.20 to 0.60; P<0.001) and ICC was 0.60 (95% CI, 0.37 to 0.76; P<0.001). No difference was observed between the mCTA and CTP predicted infarct volume in the test cohort (P=0.67).

CONCLUSIONS

A ML based mCTA model is able to predict brain tissue perfusion abnormality and follow-up infarction, comparable to CTP.

摘要

背景与目的

多期计算机断层血管造影(mCTA)可为急性缺血性卒中(AIS)患者提供供应脑部的软脑膜血管的时变图像。旨在开发一种机器学习(ML)技术,以从mCTA源图像预测组织灌注和梗死情况。

方法

从“急性缺血性卒中患者动脉内治疗分诊中使用多期CTA精确快速评估侧支循环(Prove-IT)”研究中纳入284例AIS患者。所有患者在基线时均进行了非增强计算机断层扫描、mCTA和计算机断层灌注(CTP)检查,并在随访时进行了磁共振成像/非增强计算机断层扫描。在这284例患者图像中,随机选择140例患者图像来训练和验证三个ML模型,以预测CTP上预定义的Tmax阈值化灌注异常、梗死核心和半暗带。其余144例患者图像用于测试ML模型。使用Bland-Altman图、一致性相关系数(CCC)、组内相关系数(ICC)和Dice相似系数,将ML模型预测的灌注、梗死核心和半暗带病变与CTP灌注病变以及随访梗死进行比较。

结果

mCTA预测的灌注体积与CTP灌注体积之间的平均差异为4.6 mL(一致性界限[LoA],-53至62.1 mL;P = 0.56;CCC 0.63 [95%置信区间[CI],0.53至0.71;P < 0.01],ICC 0.68 [95% CI,0.58至0.78;P < 0.001])。在100例急性再灌注患者(改良脑梗死溶栓[mTICI] 2b/2c/3)中,mCTA预测的梗死与随访梗死之间的平均差异为21.7 mL,而在44例未实现再灌注的患者(mTICI 0/1)中为3.4 mL。在再灌注受试者中,CCC为0.4(95% CI,0.15至0.55;P < 0.01),ICC为0.42(95% CI,0.18至0.50;P < 0.01);在未再灌注受试者中,CCC为0.52(95% CI,0.20至0.60;P < 0.001),ICC为0.60(95% CI,0.37至0.76;P < 0.001)。在测试队列中,mCTA和CTP预测的梗死体积之间未观察到差异(P = 0.67)。

结论

基于ML的mCTA模型能够预测脑组织灌注异常和随访梗死情况,与CTP相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a34/8189856/3ddd5c2ff2f3/jos-2020-05064f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验