Department of Clinical Neurosciences (H.K., W.Q., M.D.H., A.M.D., M.G., B.K.M.), University of Calgary.
Department of Biomedical Engineering and Physics (A.M.B.), Amsterdam University Medical Centre.
Stroke. 2021 Jan;52(1):223-231. doi: 10.1161/STROKEAHA.120.030092. Epub 2020 Dec 7.
Prediction of infarct extent among patients with acute ischemic stroke using computed tomography perfusion is defined by predefined discrete computed tomography perfusion thresholds. Our objective is to develop a threshold-free computed tomography perfusion-based machine learning (ML) model to predict follow-up infarct in patients with acute ischemic stroke.
Sixty-eight patients from the PRoveIT study (Measuring Collaterals With Multi-Phase CT Angiography in Patients With Ischemic Stroke) were used to derive a ML model using random forest to predict follow-up infarction voxel by voxel, and 137 patients from the HERMES study (Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke Trials) were used to test the derived ML model. Average map, T, cerebral blood flow, cerebral blood volume, and time variables including stroke onset-to-imaging and imaging-to-reperfusion time, were used as features to train the ML model. Spatial and volumetric agreement between the ML model predicted follow-up infarct and actual follow-up infarct were assessed. Relative cerebral blood flow <0.3 threshold using RAPID software and time-dependent T thresholds were compared with the ML model.
In the test cohort (137 patients), median follow-up infarct volume predicted by the ML model was 30.9 mL (interquartile range, 16.4-54.3 mL), compared with a median 29.6 mL (interquartile range, 11.1-70.9 mL) of actual follow-up infarct volume. The Pearson correlation coefficient between 2 measurements was 0.80 (95% CI, 0.74-0.86, <0.001) while the volumetric difference was -3.2 mL (interquartile range, -16.7 to 6.1 mL). Volumetric difference with the ML model was smaller versus the relative cerebral blood flow <0.3 threshold and the time-dependent T threshold (<0.001).
A ML using computed tomography perfusion data and time estimates follow-up infarction in patients with acute ischemic stroke better than current methods.
利用计算机断层灌注技术预测急性缺血性脑卒中患者的梗死范围,是通过预先设定的离散计算机断层灌注阈值来定义的。我们的目的是开发一种无阈值的基于计算机断层灌注的机器学习(ML)模型,以预测急性缺血性脑卒中患者的随访性梗死。
利用来自 PRoveIT 研究(用多相 CT 血管造影测量缺血性脑卒中患者的侧支循环)的 68 例患者数据,使用随机森林来逐个体素地预测随访性梗死,同时利用来自 HERMES 研究(多血管内卒中介入试验中高效果的再灌注评估)的 137 例患者数据来验证所开发的 ML 模型。平均图、T 值、脑血流量、脑血容量以及包括发病到成像和成像到再灌注时间在内的时间变量,被用作训练 ML 模型的特征。评估 ML 模型预测的随访性梗死与实际随访性梗死之间的空间和容积一致性。使用 RAPID 软件的相对脑血流量<0.3 阈值和时间依赖性 T 阈值与 ML 模型进行比较。
在验证队列(137 例患者)中,ML 模型预测的随访性梗死体积中位数为 30.9mL(四分位距,16.4-54.3mL),而实际随访性梗死体积中位数为 29.6mL(四分位距,11.1-70.9mL)。2 种测量方法之间的 Pearson 相关系数为 0.80(95%CI,0.74-0.86,<0.001),而容积差异为-3.2mL(四分位距,-16.7 至 6.1mL)。与相对脑血流量<0.3 阈值和时间依赖性 T 阈值相比,ML 模型的容积差异更小(<0.001)。
利用计算机断层灌注数据和时间估计的 ML 方法比目前的方法能更好地预测急性缺血性脑卒中患者的随访性梗死。