Suppr超能文献

生物物理和结构研究揭示了关键烃生物合成酶酰基辅酶 A 还原酶的边缘稳定性。

Biophysical and structural studies reveal marginal stability of a crucial hydrocarbon biosynthetic enzyme acyl ACP reductase.

机构信息

Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

出版信息

Sci Rep. 2021 Jun 8;11(1):12045. doi: 10.1038/s41598-021-91232-0.

Abstract

Acyl-ACP reductase (AAR) is one of the two key cyanobacterial enzymes along with aldehyde deformylating oxygenase (ADO) involved in the synthesis of long-chain alkanes, a drop-in biofuel. The enzyme is prone to aggregation when expressed in Escherichia coli, leading to varying alkane levels. The present work attempts to investigate the crucial structural aspects of AAR protein associated with its stability and folding. Characterization by dynamic light scattering experiment and intact mass spectrometry revealed that recombinantly expressed AAR in E. coli existed in multiple-sized protein particles due to diverse lipidation. Interestingly, while thermal- and urea-based denaturation of AAR showed 2-state unfolding transition in circular dichroism and intrinsic fluorescent spectroscopy, the unfolding process of AAR was a 3-state pathway in GdnHCl solution suggesting that the protein milieu plays a significant role in dictating its folding. Apparent standard free energy [Formula: see text] of ~ 4.5 kcal/mol for the steady-state unfolding of AAR indicated borderline stability of the protein. Based on these evidences, we propose that the marginal stability of AAR are plausible contributing reasons for aggregation propensity and hence the low catalytic activity of the enzyme when expressed in E. coli for biofuel production. Our results show a path for building superior biocatalyst for higher biofuel production.

摘要

酰基辅酶 A 还原酶 (AAR) 是参与长链烷烃(一种可替代的生物燃料)合成的两种关键蓝藻酶之一,另一种是醛脱甲酰基氧化酶 (ADO)。该酶在大肠杆菌中表达时容易聚集,导致烷烃水平不同。本工作试图研究与 AAR 稳定性和折叠相关的关键结构方面。动态光散射实验和完整质谱分析的特性表明,由于不同的脂化作用,在大肠杆菌中表达的重组 AAR 存在多种大小的蛋白质颗粒。有趣的是,虽然 AAR 的热和脲基变性在圆二色性和内源荧光光谱中显示出 2 态展开转变,但在 GdnHCl 溶液中 AAR 的展开过程是 3 态途径,表明蛋白质环境在决定其折叠方面起着重要作用。AAR 稳态展开的表观标准自由能 [Formula: see text] 为 ~4.5 kcal/mol,表明该蛋白具有边界稳定性。基于这些证据,我们提出 AAR 的边缘稳定性是其在大肠杆菌中表达时聚集倾向和低酶催化活性的可能原因。我们的结果为构建更高产生物燃料的优良生物催化剂提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/154d/8187606/b6b9eed85200/41598_2021_91232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验