Suppr超能文献

基于预期的节奏同步作为连续贝叶斯推断。

Expectancy-based rhythmic entrainment as continuous Bayesian inference.

机构信息

Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2021 Jun 9;17(6):e1009025. doi: 10.1371/journal.pcbi.1009025. eCollection 2021 Jun.

Abstract

When presented with complex rhythmic auditory stimuli, humans are able to track underlying temporal structure (e.g., a "beat"), both covertly and with their movements. This capacity goes far beyond that of a simple entrained oscillator, drawing on contextual and enculturated timing expectations and adjusting rapidly to perturbations in event timing, phase, and tempo. Previous modeling work has described how entrainment to rhythms may be shaped by event timing expectations, but sheds little light on any underlying computational principles that could unify the phenomenon of expectation-based entrainment with other brain processes. Inspired by the predictive processing framework, we propose that the problem of rhythm tracking is naturally characterized as a problem of continuously estimating an underlying phase and tempo based on precise event times and their correspondence to timing expectations. We present two inference problems formalizing this insight: PIPPET (Phase Inference from Point Process Event Timing) and PATIPPET (Phase and Tempo Inference). Variational solutions to these inference problems resemble previous "Dynamic Attending" models of perceptual entrainment, but introduce new terms representing the dynamics of uncertainty and the influence of expectations in the absence of sensory events. These terms allow us to model multiple characteristics of covert and motor human rhythm tracking not addressed by other models, including sensitivity of error corrections to inter-event interval and perceived tempo changes induced by event omissions. We show that positing these novel influences in human entrainment yields a range of testable behavioral predictions. Guided by recent neurophysiological observations, we attempt to align the phase inference framework with a specific brain implementation. We also explore the potential of this normative framework to guide the interpretation of experimental data and serve as building blocks for even richer predictive processing and active inference models of timing.

摘要

当呈现复杂的节奏听觉刺激时,人类能够跟踪潜在的时间结构(例如,“节拍”),无论是在潜意识中还是通过运动。这种能力远远超出了简单的受迫振荡器的能力,它利用了上下文和文化化的定时预期,并快速适应事件定时、相位和节奏的干扰。以前的建模工作描述了节奏的同步如何受到事件定时预期的影响,但几乎没有揭示任何潜在的计算原则,可以将基于预期的同步现象与其他大脑过程统一起来。受预测处理框架的启发,我们提出,跟踪节奏的问题自然可以被描述为一个基于精确事件时间及其与定时预期的对应关系来连续估计潜在相位和节奏的问题。我们提出了两个正式表述这一见解的推理问题:PIPPET(基于点过程事件时间的相位推断)和 PATIPPET(相位和节奏推断)。这些推理问题的变分解决方案类似于以前的感知同步的“动态注意”模型,但引入了新的术语,代表不确定性的动态和在没有感官事件的情况下期望的影响。这些术语允许我们模拟其他模型未解决的多种隐蔽和运动人类节奏跟踪的特征,包括错误校正对事件间间隔的敏感性和事件缺失引起的感知节奏变化。我们表明,在人类同步中假设这些新的影响会产生一系列可测试的行为预测。在最近的神经生理学观察的指导下,我们尝试将相位推断框架与特定的大脑实现对齐。我们还探讨了这个规范框架在指导实验数据解释和作为更丰富的预测处理和主动推理模型的构建块方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db6d/8216548/60b17e7d1e36/pcbi.1009025.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验