Proksch Shannon, Comstock Daniel C, Médé Butovens, Pabst Alexandria, Balasubramaniam Ramesh
Sensorimotor Neuroscience Laboratory, Cognitive & Information Sciences, University of California, Merced, Merced, CA, United States.
Front Hum Neurosci. 2020 Sep 11;14:578546. doi: 10.3389/fnhum.2020.578546. eCollection 2020.
In this article, we review recent advances in research on rhythm and musical beat perception, focusing on the role of predictive processes in auditory motor interactions. We suggest that experimental evidence of the motor system's role in beat perception, including in passive listening, may be explained by the generation and maintenance of internal predictive models, concordant with the Active Inference framework of sensory processing. We highlight two complementary hypotheses for the neural underpinnings of rhythm perception: The Action Simulation for Auditory Prediction hypothesis (Patel and Iversen, 2014) and the Gradual Audiomotor Evolution hypothesis (Merchant and Honing, 2014) and review recent experimental progress supporting each of these hypotheses. While initial formulations of ASAP and GAE explain different aspects of beat-based timing-the involvement of motor structures in the absence of movement, and physical entrainment to an auditory beat respectively-we suggest that work under both hypotheses provide converging evidence toward understanding the predictive role of the motor system in the perception of rhythm, and the specific neural mechanisms involved. We discuss future experimental work necessary to further evaluate the causal neural mechanisms underlying beat and rhythm perception.
在本文中,我们回顾了节奏与音乐节拍感知研究的最新进展,重点关注预测过程在听觉运动交互中的作用。我们认为,运动系统在节拍感知中所起作用的实验证据,包括在被动聆听中的作用,可能可以通过内部预测模型的生成和维持来解释,这与感觉处理的主动推理框架相一致。我们强调了节奏感知神经基础的两个互补假设:听觉预测的动作模拟假设(帕特尔和艾弗森,2014年)和渐进听觉运动进化假设(默CHANT和霍宁,2014年),并回顾了支持这些假设的近期实验进展。虽然ASAP和GAE的最初表述分别解释了基于节拍的时间安排的不同方面——在没有运动的情况下运动结构的参与以及对听觉节拍的物理跟随——但我们认为,在这两个假设下开展的工作都为理解运动系统在节奏感知中的预测作用以及所涉及的特定神经机制提供了趋同的证据。我们讨论了进一步评估节拍和节奏感知背后因果神经机制所需的未来实验工作。