Suppr超能文献

分层效应促进了合成和经验多层网络上的传播过程。

Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks.

机构信息

Sandia National Laboratories, Albuquerque, NM, United States of America.

出版信息

PLoS One. 2021 Jun 9;16(6):e0252266. doi: 10.1371/journal.pone.0252266. eCollection 2021.

Abstract

In this paper we consider the effects of corporate hierarchies on innovation spread across multilayer networks, modeled by an elaborated SIR framework. We show that the addition of management layers can significantly improve spreading processes on both random geometric graphs and empirical corporate networks. Additionally, we show that utilizing a more centralized working relationship network rather than a strict administrative network further increases overall innovation reach. In fact, this more centralized structure in conjunction with management layers is essential to both reaching a plurality of nodes and creating a stable adopted community in the long time horizon. Further, we show that the selection of seed nodes affects the final stability of the adopted community, and while the most influential nodes often produce the highest peak adoption, this is not always the case. In some circumstances, seeding nodes near but not in the highest positions in the graph produces larger peak adoption and more stable long-time adoption.

摘要

在本文中,我们研究了企业层级结构对多层网络中创新传播的影响,该模型通过一个精心设计的 SIR 框架来表示。我们表明,管理层次的增加可以显著提高随机几何图和经验企业网络上的传播过程。此外,我们还表明,利用更集中的工作关系网络而不是严格的管理网络,进一步提高了整体创新的覆盖范围。实际上,这种更集中的结构与管理层相结合,对于在长时间内达到多个节点并创建稳定的采用社区都是至关重要的。此外,我们表明,种子节点的选择会影响最终采用社区的稳定性,尽管最有影响力的节点通常会产生最高的峰值采用率,但情况并非总是如此。在某些情况下,在图中接近但不在最高位置的种子节点会产生更大的峰值采用率和更稳定的长期采用率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d34f/8189515/161f28ef8d76/pone.0252266.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验