Suppr超能文献

重新审视在线社交网络中道德传染的证据。

Reconsidering evidence of moral contagion in online social networks.

作者信息

Burton Jason W, Cruz Nicole, Hahn Ulrike

机构信息

Department of Psychological Sciences, Birkbeck, University of London, London, UK.

School of Psychology, University of New South Wales, Sydney, New South Wales, Australia.

出版信息

Nat Hum Behav. 2021 Dec;5(12):1629-1635. doi: 10.1038/s41562-021-01133-5. Epub 2021 Jun 10.

Abstract

The ubiquity of social media use and the digital data traces it produces has triggered a potential methodological shift in the psychological sciences away from traditional, laboratory-based experimentation. The hope is that, by using computational social science methods to analyse large-scale observational data from social media, human behaviour can be studied with greater statistical power and ecological validity. However, current standards of null hypothesis significance testing and correlational statistics seem ill-suited to markedly noisy, high-dimensional social media datasets. We explore this point by probing the moral contagion phenomenon, whereby the use of moral-emotional language increases the probability of message spread. Through out-of-sample prediction, model comparisons and specification curve analyses, we find that the moral contagion model performs no better than an implausible XYZ contagion model. This highlights the risks of using purely correlational evidence from large observational datasets and sounds a cautionary note for psychology's merge with big data.

摘要

社交媒体使用的普遍性及其产生的数字数据痕迹引发了心理科学领域潜在的方法转变,即从传统的基于实验室的实验转向其他方法。人们希望,通过使用计算社会科学方法来分析来自社交媒体的大规模观测数据,可以以更大的统计效力和生态效度来研究人类行为。然而,当前的零假设显著性检验和相关统计标准似乎并不适用于明显嘈杂、高维的社交媒体数据集。我们通过探究道德感染现象来探讨这一点,即使用道德情感语言会增加信息传播的可能性。通过样本外预测、模型比较和规格曲线分析,我们发现道德感染模型的表现并不比一个看似不合理的XYZ感染模型更好。这凸显了使用来自大型观测数据集的纯相关证据的风险,并为心理学与大数据的融合敲响了警钟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验