Suppr超能文献

利用机器学习预测呼吸机相关性肺炎。

Predicting ventilator-associated pneumonia with machine learning.

机构信息

Dascena, Inc., Houston, TX, United States.

出版信息

Medicine (Baltimore). 2021 Jun 11;100(23):e26246. doi: 10.1097/MD.0000000000026246.

Abstract

Ventilator-associated pneumonia (VAP) is the most common and fatal nosocomial infection in intensive care units (ICUs). Existing methods for identifying VAP display low accuracy, and their use may delay antimicrobial therapy. VAP diagnostics derived from machine learning (ML) methods that utilize electronic health record (EHR) data have not yet been explored. The objective of this study is to compare the performance of a variety of ML models trained to predict whether VAP will be diagnosed during the patient stay.A retrospective study examined data from 6126 adult ICU encounters lasting at least 48 hours following the initiation of mechanical ventilation. The gold standard was the presence of a diagnostic code for VAP. Five different ML models were trained to predict VAP 48 hours after initiation of mechanical ventilation. Model performance was evaluated with regard to the area under the receiver operating characteristic (AUROC) curve on a 20% hold-out test set. Feature importance was measured in terms of Shapley values.The highest performing model achieved an AUROC value of 0.854. The most important features for the best-performing model were the length of time on mechanical ventilation, the presence of antibiotics, sputum test frequency, and the most recent Glasgow Coma Scale assessment.Supervised ML using patient EHR data is promising for VAP diagnosis and warrants further validation. This tool has the potential to aid the timely diagnosis of VAP.

摘要

呼吸机相关性肺炎(VAP)是重症监护病房(ICU)中最常见和最致命的医院获得性感染。现有的 VAP 识别方法准确性较低,使用这些方法可能会延迟抗菌治疗。利用电子病历(EHR)数据的机器学习(ML)方法衍生的 VAP 诊断方法尚未得到探索。本研究的目的是比较各种经过训练以预测患者住院期间是否会诊断出 VAP 的 ML 模型的性能。

一项回顾性研究检查了来自 6126 名成年 ICU 患者的数据,这些患者在开始机械通气后至少持续 48 小时。金标准是存在 VAP 的诊断代码。为了预测机械通气开始后 48 小时的 VAP,训练了 5 种不同的 ML 模型。使用 20%的保留测试集评估模型在接受者操作特征(AUROC)曲线上的性能。特征重要性通过 Shapley 值来衡量。

表现最佳的模型的 AUROC 值为 0.854。表现最佳的模型的最重要特征是机械通气时间、抗生素的使用、痰检频率和最近的格拉斯哥昏迷评分评估。

使用患者 EHR 数据进行监督 ML 对于 VAP 诊断很有前景,值得进一步验证。该工具具有帮助及时诊断 VAP 的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bbd/8202554/a9bc220d2d9c/medi-100-e26246-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验