Suppr超能文献

一种基于监督多层字典学习的脑肿瘤磁共振成像图像识别转移模型

A Transfer Model Based on Supervised Multi-Layer Dictionary Learning for Brain Tumor MRI Image Recognition.

作者信息

Gu Yi, Li Kang

机构信息

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China.

出版信息

Front Neurosci. 2021 May 28;15:687496. doi: 10.3389/fnins.2021.687496. eCollection 2021.

Abstract

Artificial intelligence (AI) is an effective technology for automatic brain tumor MRI image recognition. The training of an AI model requires a large number of labeled data, but medical data needs to be labeled by professional clinicians, which makes data collection complex and expensive. Moreover, a traditional AI model requires that the training data and test data must follow the independent and identically distributed. To solve this problem, we propose a transfer model based on supervised multi-layer dictionary learning (TSMDL) for brain tumor MRI image recognition in this paper. With the help of the knowledge learned from related domains, the goal of this model is to solve the task of transfer learning where the target domain has only a small number of labeled samples. Based on the framework of multi-layer dictionary learning, the proposed model learns the common shared dictionary of source and target domains in each layer to explore the intrinsic connections and shared information between different domains. At the same time, by making full use of the label information of samples, the Laplacian regularization term is introduced to make the dictionary coding of similar samples as close as possible and the dictionary coding of different class samples as different as possible. The recognition experiments on brain MRI image datasets REMBRANDT and Figshare show that the model performs better than competitive state of-the-art methods.

摘要

人工智能(AI)是一种用于自动脑肿瘤MRI图像识别的有效技术。人工智能模型的训练需要大量带标签的数据,但医学数据需要由专业临床医生进行标注,这使得数据收集复杂且成本高昂。此外,传统的人工智能模型要求训练数据和测试数据必须遵循独立同分布。为了解决这个问题,我们在本文中提出了一种基于监督多层字典学习(TSMDL)的迁移模型用于脑肿瘤MRI图像识别。借助从相关领域学到的知识,该模型的目标是解决目标域只有少量带标签样本的迁移学习任务。基于多层字典学习框架,所提出的模型在每一层学习源域和目标域的公共共享字典,以探索不同域之间的内在联系和共享信息。同时,通过充分利用样本的标签信息,引入拉普拉斯正则化项,使相似样本的字典编码尽可能接近,不同类样本的字典编码尽可能不同。在脑MRI图像数据集REMBRANDT和Figshare上的识别实验表明,该模型的性能优于具有竞争力的现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8422/8193061/09268a5b71ef/fnins-15-687496-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验