Montoya Joseph H, Winther Kirsten T, Flores Raul A, Bligaard Thomas, Hummelshøj Jens S, Aykol Muratahan
Toyota Research Institute Los Altos CA 94022 USA
SLAC National Accelerator Laboratory Menlo Park CA 94025 USA.
Chem Sci. 2020 Jul 30;11(32):8517-8532. doi: 10.1039/d0sc01101k.
We present an end-to-end computational system for autonomous materials discovery. The system aims for cost-effective optimization in large, high-dimensional search spaces of materials by adopting a sequential, agent-based approach to deciding which experiments to carry out. In choosing next experiments, agents can make use of past knowledge, surrogate models, logic, thermodynamic or other physical constructs, heuristic rules, and different exploration-exploitation strategies. We show a series of examples for (i) how the discovery campaigns for finding materials satisfying a relative stability objective can be simulated to design new agents, and (ii) how those agents can be deployed in real discovery campaigns to control experiments run externally, such as the cloud-based density functional theory simulations in this work. In a sample set of 16 campaigns covering a range of binary and ternary chemistries including metal oxides, phosphides, sulfides and alloys, this autonomous platform found 383 new stable or nearly stable materials with no intervention by the researchers.
我们提出了一个用于自主材料发现的端到端计算系统。该系统旨在通过采用基于智能体的顺序方法来决定进行哪些实验,从而在大规模、高维材料搜索空间中实现具有成本效益的优化。在选择下一个实验时,智能体可以利用过去的知识、替代模型、逻辑、热力学或其他物理结构、启发式规则以及不同的探索-利用策略。我们展示了一系列示例,(i)如何模拟寻找满足相对稳定性目标的材料的发现活动来设计新的智能体,以及(ii)如何将这些智能体部署到实际的发现活动中以控制外部运行的实验,例如本工作中基于云的密度泛函理论模拟。在涵盖包括金属氧化物、磷化物、硫化物和合金等一系列二元和三元化学体系的16个活动样本集中,这个自主平台在没有研究人员干预的情况下发现了383种新的稳定或近乎稳定的材料。