Mueller Tim, Montoya Joseph, Ye Weike, Lei Xiangyun, Hung Linda, Hummelshøj Jens, Puzon Michael, Martinez Daniel, Fajardo Chris, Abela Rachel
Toyota Research Institute, Los Altos, CA 94022.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2320134121. doi: 10.1073/pnas.2320134121. Epub 2024 Sep 9.
The electrochemical series is a useful tool in electrochemistry, but its effectiveness in materials chemistry is limited by the fact that the standard electrochemical series is based on a relatively small set of reactions, many of which are measured in aqueous solutions. To address this problem, we have used machine learning to create an electrochemical series for inorganic materials from tens of thousands of entries in the Inorganic Crystal Structure Database. We demonstrate that this series is generally more consistent with oxidation states in solid-state materials than the series based on aqueous ions. The electrochemical series was constructed by developing and parameterizing a physical, human-interpretable model of oxidation states in materials. We show that this model enables the prediction of oxidation states from composition in a way that is more accurate than a state-of-the-art transformer-based neural network model. We present applications of our approach to structure prediction, materials discovery, and materials electrochemistry, and we discuss possible additional applications and areas for improvement. To facilitate the use of our approach, we introduce a freely available website and API.
电化学序列是电化学中一种有用的工具,但其在材料化学中的有效性受到标准电化学序列基于相对较少的一组反应这一事实的限制,其中许多反应是在水溶液中测量的。为了解决这个问题,我们利用机器学习从无机晶体结构数据库中的数万个条目中创建了一个无机材料的电化学序列。我们证明,与基于水合离子的序列相比,这个序列通常与固态材料中的氧化态更一致。该电化学序列是通过开发和参数化材料中氧化态的物理、可人工解释的模型构建的。我们表明,该模型能够以比基于最先进的基于变压器的神经网络模型更准确的方式从组成预测氧化态。我们展示了我们的方法在结构预测、材料发现和材料电化学中的应用,并讨论了可能的其他应用和改进领域。为了便于使用我们的方法,我们引入了一个免费的网站和应用程序编程接口。