Suppr超能文献

[抗菌肽的设计与优化研究进展]

[Progress on the design and optimization of antimicrobial peptides].

作者信息

Zhang Ruonan, Wu Di, Gao Yitian

机构信息

School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China.

School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1247-1253. doi: 10.7507/1001-5515.202206017.

Abstract

Antimicrobial peptides (AMPs) are a class of peptides widely existing in nature with broad-spectrum antimicrobial activity. It is considered as a new alternative to traditional antibiotics because of its unique mechanism of antimicrobial activity. The development and application of natural AMPs are limited due to their drawbacks such as low antimicrobial activity and unstable metabolism. Therefore, the design and optimization of derived peptides based on natural antimicrobial peptides have become recent research hotspots. In this paper, we focus on ribosomal AMPs and summarize the design and optimization strategies of some related derived peptides, which include reasonable primary structure modification, cyclization strategy and computer-aided strategy. We expect to provide ideas for the design and optimization of antimicrobial peptides and the development of anti-infective drugs through analysis and summary in this paper.

摘要

抗菌肽(AMPs)是一类广泛存在于自然界的具有广谱抗菌活性的肽。由于其独特的抗菌活性机制,它被认为是传统抗生素的一种新替代品。天然抗菌肽因其抗菌活性低、代谢不稳定等缺点,其开发和应用受到限制。因此,基于天然抗菌肽的衍生肽的设计与优化已成为近年来的研究热点。本文聚焦于核糖体抗菌肽,总结了一些相关衍生肽的设计与优化策略,包括合理的一级结构修饰、环化策略和计算机辅助策略。我们期望通过本文的分析和总结,为抗菌肽的设计与优化以及抗感染药物的开发提供思路。

相似文献

1
[Progress on the design and optimization of antimicrobial peptides].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1247-1253. doi: 10.7507/1001-5515.202206017.
2
Current synthetic chemistry towards cyclic antimicrobial peptides.
J Pept Sci. 2022 Jun;28(6):e3387. doi: 10.1002/psc.3387. Epub 2021 Dec 21.
3
Unnatural amino acids: promising implications for the development of new antimicrobial peptides.
Crit Rev Microbiol. 2023 Mar;49(2):231-255. doi: 10.1080/1040841X.2022.2047008. Epub 2022 Mar 7.
4
Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield.
Appl Microbiol Biotechnol. 2023 Sep;107(18):5569-5593. doi: 10.1007/s00253-023-12651-9. Epub 2023 Jul 14.
5
Alpha-helical cationic antimicrobial peptides: relationships of structure and function.
Protein Cell. 2010 Feb;1(2):143-52. doi: 10.1007/s13238-010-0004-3. Epub 2010 Feb 6.
6
Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents.
Int J Nanomedicine. 2024 Feb 1;19:1017-1039. doi: 10.2147/IJN.S445333. eCollection 2024.
8
Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
Can J Microbiol. 2015 Feb;61(2):93-103. doi: 10.1139/cjm-2014-0613. Epub 2014 Nov 20.
9
Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
J Appl Microbiol. 2022 Mar;132(3):1573-1596. doi: 10.1111/jam.15314. Epub 2021 Oct 13.
10
Recent advances in the design of antimicrobial peptide conjugates.
J Mater Chem B. 2022 May 18;10(19):3587-3600. doi: 10.1039/d1tb02757c.

引用本文的文献

1
Transcriptome analysis of Corvus splendens reveals a repertoire of antimicrobial peptides.
Sci Rep. 2023 Oct 31;13(1):18728. doi: 10.1038/s41598-023-45875-w.
2
The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances.
Pharmaceutics. 2023 Sep 4;15(9):2278. doi: 10.3390/pharmaceutics15092278.
3
[Near-infrared excited graphene oxide/silver nitrate/chitosan coating for improving antibacterial properties of titanium implants].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023 Aug 15;37(8):937-944. doi: 10.7507/1002-1892.202303041.

本文引用的文献

1
A review on antimicrobial peptides databases and the computational tools.
Database (Oxford). 2022 Mar 19;2022. doi: 10.1093/database/baac011.
3
4
DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides.
Nucleic Acids Res. 2022 Jan 7;50(D1):D488-D496. doi: 10.1093/nar/gkab651.
5
Improving Docking Power for Short Peptides Using Random Forest.
J Chem Inf Model. 2021 Jun 28;61(6):3074-3090. doi: 10.1021/acs.jcim.1c00573. Epub 2021 Jun 14.
6
Antimicrobial peptides towards clinical application: Delivery and formulation.
Adv Drug Deliv Rev. 2021 Aug;175:113818. doi: 10.1016/j.addr.2021.05.028. Epub 2021 Jun 4.
7
Influence of Different Aromatic Hydrophobic Residues on the Antimicrobial Activity and Membrane Selectivity of BRBR-NH Tetrapeptide.
Langmuir. 2020 Dec 22;36(50):15331-15342. doi: 10.1021/acs.langmuir.0c02777. Epub 2020 Dec 9.
8
Design and characterization of new antimicrobial peptides derived from aurein 1.2 with enhanced antibacterial activity.
Biochimie. 2021 Feb;181:42-51. doi: 10.1016/j.biochi.2020.11.020. Epub 2020 Nov 30.
9
Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis.
Biomater Sci. 2020 Sep 21;8(18):4975-4996. doi: 10.1039/d0bm00789g. Epub 2020 Jul 28.
10
Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development.
Chemistry. 2021 Jan 21;27(5):1487-1513. doi: 10.1002/chem.201905385. Epub 2020 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验