Suppr超能文献

利用卷积神经网络进行冠状动脉内心电图检测心肌缺血。

Detection of myocardial ischemia by intracoronary ECG using convolutional neural networks.

机构信息

Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

出版信息

PLoS One. 2021 Jun 14;16(6):e0253200. doi: 10.1371/journal.pone.0253200. eCollection 2021.

Abstract

INTRODUCTION

The electrocardiogram (ECG) is a valuable tool for the diagnosis of myocardial ischemia as it presents distinctive ischemic patterns. Deep learning methods such as convolutional neural networks (CNN) are employed to extract data-derived features and to recognize natural patterns. Hence, CNN enable an unbiased view on well-known clinical phenomenon, e.g., myocardial ischemia. This study tested a novel, hypothesis-generating approach using pre-trained CNN to determine the optimal ischemic parameter as obtained from the highly susceptible intracoronary ECG (icECG).

METHOD

This was a retrospective observational study in 228 patients with chronic coronary syndrome. Each patient had participated in clinical trials with icECG recording and ST-segment shift measurement at the beginning (i.e., non-ischemic) and the end (i.e., ischemic) of a one-minute proximal coronary artery balloon occlusion establishing the reference. Using these data (893 icECGs in total), two pre-trained, open-access CNN (GoogLeNet/ResNet101) were trained to recognize ischemia. The best performing CNN during training were compared with the icECG ST-segment shift for diagnostic accuracy in the detection of artificially induced myocardial ischemia.

RESULTS

Using coronary patency or occlusion as reference for absent or present myocardial ischemia, receiver-operating-characteristics (ROC)-analysis of manually obtained icECG ST-segment shift (mV) showed an area under the ROC-curve (AUC) of 0.903±0.043 (p<0.0001, sensitivity 80%, specificity 92% at a cut-off of 0.279mV). The best performing CNN showed an AUC of 0.924 (sensitivity 93%, specificity 92%). DeLong-Test of the ROC-curves showed no significant difference between the AUCs. The underlying morphology responsible for the network prediction differed between the trained networks but was focused on the ST-segment and the T-wave for myocardial ischemia detection.

CONCLUSIONS

When tested in an experimental setting with artificially induced coronary artery occlusion, quantitative icECG ST-segment shift and CNN using pathophysiologic prediction criteria detect myocardial ischemia with similarly high accuracy.

摘要

简介

心电图(ECG)是诊断心肌缺血的有价值的工具,因为它呈现出独特的缺血模式。深度学习方法,如卷积神经网络(CNN),用于提取数据衍生特征并识别自然模式。因此,CNN 可以对众所周知的临床现象(如心肌缺血)进行无偏见的观察。本研究使用经过预训练的 CNN 测试了一种新颖的、产生假设的方法,以确定从高度敏感的冠状动脉内心电图(icECG)获得的最佳缺血参数。

方法

这是一项回顾性观察研究,共纳入 228 例慢性冠状动脉综合征患者。每位患者均参加了 icECG 记录和 ST 段偏移测量的临床试验,在一分钟近端冠状动脉球囊闭塞开始时(即非缺血期)和结束时(即缺血期)建立参考。使用这些数据(共 893 份 icECG),对两种经过预训练的开放访问 CNN(GoogLeNet/ResNet101)进行了训练,以识别缺血。在训练过程中表现最好的 CNN 与 icECG ST 段偏移进行比较,以检测人工诱导的心肌缺血的诊断准确性。

结果

使用冠状动脉通畅或闭塞作为无或有心肌缺血的参考,手动获得的 icECG ST 段偏移(mV)的受试者工作特征(ROC)分析显示 ROC 曲线下面积(AUC)为 0.903±0.043(p<0.0001,敏感性 80%,特异性 92%,截断值为 0.279mV)。表现最好的 CNN 显示 AUC 为 0.924(敏感性 93%,特异性 92%)。ROC 曲线的 DeLong 检验显示 AUC 无显著差异。两种训练网络之间负责网络预测的潜在形态不同,但都集中在 ST 段和 T 波上,用于心肌缺血检测。

结论

在人工诱导冠状动脉闭塞的实验环境中进行测试时,定量 icECG ST 段偏移和使用病理生理预测标准的 CNN 以类似的高准确性检测心肌缺血。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc65/8202932/4f0059f5a60b/pone.0253200.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验