Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
PLoS One. 2021 Jun 14;16(6):e0253200. doi: 10.1371/journal.pone.0253200. eCollection 2021.
The electrocardiogram (ECG) is a valuable tool for the diagnosis of myocardial ischemia as it presents distinctive ischemic patterns. Deep learning methods such as convolutional neural networks (CNN) are employed to extract data-derived features and to recognize natural patterns. Hence, CNN enable an unbiased view on well-known clinical phenomenon, e.g., myocardial ischemia. This study tested a novel, hypothesis-generating approach using pre-trained CNN to determine the optimal ischemic parameter as obtained from the highly susceptible intracoronary ECG (icECG).
This was a retrospective observational study in 228 patients with chronic coronary syndrome. Each patient had participated in clinical trials with icECG recording and ST-segment shift measurement at the beginning (i.e., non-ischemic) and the end (i.e., ischemic) of a one-minute proximal coronary artery balloon occlusion establishing the reference. Using these data (893 icECGs in total), two pre-trained, open-access CNN (GoogLeNet/ResNet101) were trained to recognize ischemia. The best performing CNN during training were compared with the icECG ST-segment shift for diagnostic accuracy in the detection of artificially induced myocardial ischemia.
Using coronary patency or occlusion as reference for absent or present myocardial ischemia, receiver-operating-characteristics (ROC)-analysis of manually obtained icECG ST-segment shift (mV) showed an area under the ROC-curve (AUC) of 0.903±0.043 (p<0.0001, sensitivity 80%, specificity 92% at a cut-off of 0.279mV). The best performing CNN showed an AUC of 0.924 (sensitivity 93%, specificity 92%). DeLong-Test of the ROC-curves showed no significant difference between the AUCs. The underlying morphology responsible for the network prediction differed between the trained networks but was focused on the ST-segment and the T-wave for myocardial ischemia detection.
When tested in an experimental setting with artificially induced coronary artery occlusion, quantitative icECG ST-segment shift and CNN using pathophysiologic prediction criteria detect myocardial ischemia with similarly high accuracy.
心电图(ECG)是诊断心肌缺血的有价值的工具,因为它呈现出独特的缺血模式。深度学习方法,如卷积神经网络(CNN),用于提取数据衍生特征并识别自然模式。因此,CNN 可以对众所周知的临床现象(如心肌缺血)进行无偏见的观察。本研究使用经过预训练的 CNN 测试了一种新颖的、产生假设的方法,以确定从高度敏感的冠状动脉内心电图(icECG)获得的最佳缺血参数。
这是一项回顾性观察研究,共纳入 228 例慢性冠状动脉综合征患者。每位患者均参加了 icECG 记录和 ST 段偏移测量的临床试验,在一分钟近端冠状动脉球囊闭塞开始时(即非缺血期)和结束时(即缺血期)建立参考。使用这些数据(共 893 份 icECG),对两种经过预训练的开放访问 CNN(GoogLeNet/ResNet101)进行了训练,以识别缺血。在训练过程中表现最好的 CNN 与 icECG ST 段偏移进行比较,以检测人工诱导的心肌缺血的诊断准确性。
使用冠状动脉通畅或闭塞作为无或有心肌缺血的参考,手动获得的 icECG ST 段偏移(mV)的受试者工作特征(ROC)分析显示 ROC 曲线下面积(AUC)为 0.903±0.043(p<0.0001,敏感性 80%,特异性 92%,截断值为 0.279mV)。表现最好的 CNN 显示 AUC 为 0.924(敏感性 93%,特异性 92%)。ROC 曲线的 DeLong 检验显示 AUC 无显著差异。两种训练网络之间负责网络预测的潜在形态不同,但都集中在 ST 段和 T 波上,用于心肌缺血检测。
在人工诱导冠状动脉闭塞的实验环境中进行测试时,定量 icECG ST 段偏移和使用病理生理预测标准的 CNN 以类似的高准确性检测心肌缺血。