Suppr超能文献

基于心电图数据库的卷积神经网络在识别心肌梗死中的性能。

Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction.

机构信息

Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Duesseldorf, Germany.

Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University Düsseldorf, Duesseldorf, Germany.

出版信息

Sci Rep. 2020 May 21;10(1):8445. doi: 10.1038/s41598-020-65105-x.

Abstract

Artificial intelligence (AI) is developing rapidly in the medical technology field, particularly in image analysis. ECG-diagnosis is an image analysis in the sense that cardiologists assess the waveforms presented in a 2-dimensional image. We hypothesized that an AI using a convolutional neural network (CNN) may also recognize ECG images and patterns accurately. We used the PTB ECG database consisting of 289 ECGs including 148 myocardial infarction (MI) cases to develop a CNN to recognize MI in ECG. Our CNN model, equipped with 6-layer architecture, was trained with training-set ECGs. After that, our CNN and 10 physicians are tested with test-set ECGs and compared their MI recognition capability in metrics F1 (harmonic mean of precision and recall) and accuracy. The F1 and accuracy by our CNN were significantly higher (83 ± 4%, 81 ± 4%) as compared to physicians (70 ± 7%, 67 ± 7%, P < 0.0001, respectively). Furthermore, elimination of Goldberger-leads or ECG image compression up to quarter resolution did not significantly decrease the recognition capability. Deep learning with a simple CNN for image analysis may achieve a comparable capability to physicians in recognizing MI on ECG. Further investigation is warranted for the use of AI in ECG image assessment.

摘要

人工智能(AI)在医疗技术领域发展迅速,特别是在图像分析方面。心电图诊断就是一种图像分析,因为心脏病专家评估的是二维图像中呈现的波形。我们假设使用卷积神经网络(CNN)的 AI 也可以准确识别心电图图像和模式。我们使用包含 289 个心电图的 PTB ECG 数据库,其中包括 148 个心肌梗死(MI)病例,开发了一个用于识别心电图中 MI 的 CNN。我们的 CNN 模型配备了 6 层架构,使用训练集心电图进行训练。之后,我们的 CNN 和 10 名医生使用测试集心电图进行测试,并比较了他们在 F1(精度和召回率的调和平均值)和准确性方面的 MI 识别能力。与医生相比(分别为 70%±7%、67%±7%,P<0.0001),我们的 CNN 的 F1 和准确性显著更高(83%±4%、81%±4%)。此外,消除 Goldberger 导联或将心电图图像压缩到四分之一分辨率并不会显著降低识别能力。用于图像分析的深度学习简单 CNN 可能具有与医生相当的识别心电图 MI 的能力。需要进一步研究 AI 在心电图图像评估中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d7d/7242480/12c6ffc42ef4/41598_2020_65105_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验