Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.
Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States.
Biomacromolecules. 2021 Jul 12;22(7):3040-3048. doi: 10.1021/acs.biomac.1c00485. Epub 2021 Jun 15.
Progressive stiffening of the extracellular matrix (ECM) is observed in tissue development as well as in pathologies such as cancer, cardiovascular disease, and fibrotic disease. However, methods to recapitulate this phenomenon face critical limitations. Here, we present a poly(ethylene glycol)-based peptide-functionalized ECM-mimetic hydrogel platform capable of facile, user-controlled dynamic stiffening. This platform leverages supramolecular interactions between inverse-electron demand Diels-Alder tetrazine-norbornene click products (TNCP) to create pendant moieties that undergo non-covalent crosslinking, stiffening a pre-existing network formed thiol-ene click chemistry over the course of 6 h. Pendant TNCP moieties have a concentration-dependent effect on gel stiffness while still being cytocompatible and permissive of cell-mediated gel degradation. The robustness of this approach as well as its simplicity and ease of translation give it broad potential utility.
细胞外基质(ECM)的逐渐变硬在组织发育以及癌症、心血管疾病和纤维性疾病等病理学中都有观察到。然而,再现这种现象的方法面临着关键的限制。在这里,我们提出了一种基于聚乙二醇的肽功能化的细胞外基质模拟水凝胶平台,能够方便地、用户控制地实现动态变硬。该平台利用逆电子需求 Diels-Alder 四嗪-降冰片烯点击产物(TNCP)之间的超分子相互作用,创造出悬挂部分,这些悬挂部分通过非共价交联进行交联,在 6 小时内使预先形成的通过硫醇-烯点击化学形成的网络变硬。悬挂的 TNCP 部分对凝胶硬度有浓度依赖性影响,同时仍然具有细胞相容性,并允许细胞介导的凝胶降解。这种方法的稳健性以及其简单性和易于转化使其具有广泛的潜在应用。