Institute of Evolution, Centre for Ecological Research, Budapest, Hungary.
Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary.
Sci Rep. 2021 Jun 15;11(1):12513. doi: 10.1038/s41598-021-91489-5.
Efficient search in vast combinatorial spaces, such as those of possible action sequences, linguistic structures, or causal explanations, is an essential component of intelligence. Is there any computational domain that is flexible enough to provide solutions to such diverse problems and can be robustly implemented over neural substrates? Based on previous accounts, we propose that a Darwinian process, operating over sequential cycles of imperfect copying and selection of neural informational patterns, is a promising candidate. Here we implement imperfect information copying through one reservoir computing unit teaching another. Teacher and learner roles are assigned dynamically based on evaluation of the readout signal. We demonstrate that the emerging Darwinian population of readout activity patterns is capable of maintaining and continually improving upon existing solutions over rugged combinatorial reward landscapes. We also demonstrate the existence of a sharp error threshold, a neural noise level beyond which information accumulated by an evolutionary process cannot be maintained. We introduce a novel analysis method, neural phylogenies, that displays the unfolding of the neural-evolutionary process.
在广阔的组合空间中进行高效搜索,例如可能的动作序列、语言结构或因果解释,是智能的一个基本组成部分。是否有任何计算领域足够灵活,可以为这些不同的问题提供解决方案,并可以在神经基质上稳健地实现?基于以前的研究,我们提出,一个达尔文式的过程,在不完美的神经信息模式复制和选择的序列循环中运行,是一个有前途的候选者。在这里,我们通过一个储层计算单元向另一个单元进行不完美的信息复制。教师和学习者的角色是根据对读出信号的评估动态分配的。我们证明,在崎岖的组合奖励景观中,新兴的读出活动模式的达尔文种群能够维持并不断改进现有解决方案。我们还证明了存在一个明显的错误阈值,即超过这个阈值,进化过程积累的信息就无法维持。我们引入了一种新的分析方法,神经系统发生,它显示了神经进化过程的展开。