Jafarkhani Alireza, Imani Behzad, Saeedi Soheila, Shams Amir
Department of Operating Room, School of Paramedicine Hamadan University of Medical Sciences Hamadan Iran.
Department of Health Information Technology, School of Allied Medical Sciences Hamadan University of Medical Sciences Hamadan Iran.
Health Sci Rep. 2025 Jan 22;8(1):e70336. doi: 10.1002/hsr2.70336. eCollection 2025 Jan.
Coronary artery bypass grafting (CABG) is a key treatment for coronary artery disease, but accurately predicting patient survival after the procedure presents significant challenges. This study aimed to systematically review articles using machine learning techniques to predict patient survival rates and identify factors affecting these rates after CABG surgery.
From January 1, 2015, to January 20, 2024, a comprehensive literature search was conducted across PubMed, Scopus, IEEE Xplore, and Web of Science. The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Inclusion criteria included studies that evaluated survival rates and predictors associated with CABG patients during the specified period.
After eliminating duplicates, a total of 1330 articles were identified. Following a systematic screening, 24 studies met the inclusion criteria. Our findings revealed 43 distinct factors influencing survival rates in patients undergoing CABG. Notably, five factors-age, ejection fraction, diabetes mellitus, a history of cerebrovascular disease or accidents, and renal function-were consistently identified across multiple studies as significant predictors of postsurgical survival.
This systematic review identifies key factors influencing survival rates after CABG surgery and highlights the role of machine learning in improving predictive accuracy. By identifying high-risk patients through these key factors, our findings offer practical insights for healthcare providers, enhancing patient management and customizing therapeutic strategies after CABG. This study significantly enhances existing literature by combining machine learning techniques with clinical factors, thereby improving the understanding of patient outcomes in CABG surgery.
冠状动脉旁路移植术(CABG)是治疗冠状动脉疾病的关键方法,但准确预测术后患者生存率面临重大挑战。本研究旨在系统回顾运用机器学习技术预测患者生存率以及确定冠状动脉旁路移植术(CABG)后影响这些生存率的因素的文章。
从2015年1月1日至2024年1月20日,在PubMed、Scopus、IEEE Xplore和科学网进行了全面的文献检索。该综述遵循系统评价和Meta分析的首选报告项目(PRISMA)指南。纳入标准包括在指定期间评估冠状动脉旁路移植术(CABG)患者生存率及预测因素的研究。
在剔除重复项后,共识别出1330篇文章。经过系统筛选,24项研究符合纳入标准。我们的研究结果揭示了43个影响冠状动脉旁路移植术(CABG)患者生存率的不同因素。值得注意的是,年龄、射血分数、糖尿病、脑血管疾病或事故史以及肾功能这五个因素在多项研究中一直被确定为术后生存的重要预测因素。
本系统评价确定了影响冠状动脉旁路移植术(CABG)后生存率的关键因素,并强调了机器学习在提高预测准确性方面的作用。通过这些关键因素识别高危患者,我们的研究结果为医疗保健提供者提供了实用见解,加强了患者管理并定制了冠状动脉旁路移植术(CABG)后的治疗策略。本研究通过将机器学习技术与临床因素相结合,显著丰富了现有文献,从而增进了对冠状动脉旁路移植术(CABG)手术患者预后的理解。