Suppr超能文献

利用机器学习识别有饮酒倾向的预测因素,并为有风险的无家可归饮酒者创建个性化的信息。

Using machine learning to identify predictors of imminent drinking and create tailored messages for at-risk drinkers experiencing homelessness.

机构信息

School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA.

TSET Health Promotion Research Center, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

出版信息

J Subst Abuse Treat. 2021 Aug;127:108417. doi: 10.1016/j.jsat.2021.108417. Epub 2021 Apr 20.

Abstract

Adults experiencing homelessness are more likely to have an alcohol use disorder compared to adults in the general population. Although shelter-based treatments are common, completion rates tend to be poor, suggesting a need for more effective approaches that are tailored to this understudied and underserved population. One barrier to developing more effective treatments is the limited knowledge of the triggers of alcohol use among homeless adults. This paper describes the use of ecological momentary assessment (EMA) to identify predictors of "imminent drinking" (i.e., drinking within the next 4 h), among a sample of adults experiencing homelessness and receiving health services at a homeless shelter. A total of 78 mostly male (84.6%) adults experiencing homelessness (mean age = 46.6) who reported hazardous drinking completed up to five EMAs per day over 4 weeks (a total of 4557 completed EMAs). The study used machine learning techniques to create a drinking risk algorithm that predicted 82% of imminent drinking episodes within 4 h of the first drink of the day, and correctly identified 76% of nondrinking episodes. The algorithm included the following 7 predictors of imminent drinking: urge to drink, having alcohol easily available, feeling confident that alcohol would improve mood, feeling depressed, lower commitment to being alcohol free, not interacting with someone drinking alcohol, and being indoors. The research team used the results to develop intervention content (e.g., brief tailored messages) that will be delivered when imminent drinking is detected in an upcoming intervention phase. Specifically, we created three theoretically grounded message tracks focused on urge/craving, social/availability, and negative affect/mood, which are further tailored to a participant's current drinking goal (i.e., stay sober, drink less, no goal) to support positive change. To our knowledge, this is the first study to develop tailored intervention messages based on likelihood of imminent drinking, current drinking triggers, and drinking goals among adults experiencing homelessness.

摘要

与普通人群中的成年人相比,无家可归的成年人更有可能患有酒精使用障碍。尽管以收容所为基础的治疗方法较为常见,但完成率往往较低,这表明需要更有效的方法,这些方法需要针对这一研究不足和服务不足的人群进行调整。开发更有效的治疗方法的一个障碍是对无家可归的成年人中酒精使用的触发因素知之甚少。本文描述了使用生态瞬时评估(EMA)来识别无家可归成年人中“即将饮酒”(即在接下来的 4 小时内饮酒)的预测因素,这些成年人正在收容所接受健康服务。共有 78 名(84.6%)主要为男性(平均年龄为 46.6 岁)的无家可归成年人完成了多达 5 次 EMA 评估,每天一次,共完成了 4557 次 EMA 评估。该研究使用机器学习技术创建了一个饮酒风险算法,该算法在一天中第一杯酒的 4 小时内预测了 82%的即将饮酒事件,并正确识别了 76%的非饮酒事件。该算法包括以下 7 个即将饮酒的预测因素:饮酒的冲动、容易获得酒精、对酒精改善情绪有信心、感到沮丧、降低保持无酒精的承诺、不与饮酒的人互动以及在室内。研究小组使用这些结果开发干预内容(例如,简短的定制信息),这些内容将在即将进行的干预阶段检测到即将饮酒时提供。具体来说,我们创建了三个基于理论的信息轨道,分别侧重于冲动/渴望、社交/可用性和负面情绪/情绪,这些信息轨道进一步根据参与者当前的饮酒目标(即保持清醒、少饮酒、无目标)进行定制,以支持积极的变化。据我们所知,这是第一项针对无家可归的成年人,根据即将饮酒的可能性、当前饮酒触发因素和饮酒目标开发定制干预信息的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e94/8217726/2f3f85c33c2f/nihms-1702238-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验