Suppr超能文献

使用生态瞬时评估收集的日记测量来预测无家可归青年的日常住所安排。

Predicting Daily Sheltering Arrangements among Youth Experiencing Homelessness Using Diary Measurements Collected by Ecological Momentary Assessment.

机构信息

Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA.

The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

出版信息

Int J Environ Res Public Health. 2020 Sep 20;17(18):6873. doi: 10.3390/ijerph17186873.

Abstract

Youths experiencing homelessness (YEH) often cycle between various sheltering locations including spending nights on the streets, in shelters and with others. Few studies have explored the patterns of daily sheltering over time. A total of 66 participants completed 724 ecological momentary assessments that assessed daily sleeping arrangements. Analyses applied a hypothesis-generating machine learning algorithm (component-wise gradient boosting) to build interpretable models that would select only the best predictors of daily sheltering from a large set of 92 variables while accounting for the correlated nature of the data. Sheltering was examined as a three-category outcome comparing nights spent literally homeless, unstably housed or at a shelter. The final model retained 15 predictors. These predictors included (among others) specific stressors (e.g., not having a place to stay, parenting and hunger), discrimination (by a friend or nonspecified other; due to race or homelessness), being arrested and synthetic cannabinoids use (a.k.a., "kush"). The final model demonstrated success in classifying the categorical outcome. These results have implications for developing just-in-time adaptive interventions for improving the lives of YEH.

摘要

无家可归的年轻人(YEH)经常在各种避难所之间循环,包括在街上、收容所里和其他人那里过夜。很少有研究探讨过随着时间的推移,日常庇护所的模式。共有 66 名参与者完成了 724 项生态瞬时评估,评估了每日的睡眠安排。分析采用了生成假设的机器学习算法(分量梯度提升),从一大组 92 个变量中选择最佳的每日庇护预测因子,同时考虑到数据的相关性。庇护所被分为三个类别进行比较:字面意义上的无家可归、不稳定住房或庇护所。最终模型保留了 15 个预测因子。这些预测因子包括(除其他外)特定的压力源(例如,没有住处、育儿和饥饿)、歧视(来自朋友或其他不明人士;因种族或无家可归)、被捕和合成大麻素的使用(又称“kush”)。最终模型在对分类结果进行分类方面取得了成功。这些结果对于开发即时自适应干预措施以改善 YEH 的生活具有重要意义。

相似文献

9
Pregnancy and parenting support for youth experiencing homelessness.为无家可归的青年提供怀孕和育儿支持。
Public Health Nurs. 2022 Jul;39(4):728-735. doi: 10.1111/phn.13055. Epub 2022 Jan 27.

引用本文的文献

3
Couch-Surfing and Mental Health Outcomes among Sexual Minority Adolescents.性少数青少年的沙发客经历与心理健康结果
J Soc Distress Homeless. 2024;33(1):186-197. doi: 10.1080/10530789.2022.2141869. Epub 2022 Nov 10.

本文引用的文献

5
The Healthcare Needs and Rights of Youth Experiencing Homelessness.青年无家可归者的医疗需求和权利。
J Adolesc Health. 2018 Sep;63(3):372-375. doi: 10.1016/j.jadohealth.2018.06.012.
8
Substance use and homelessness among emergency department patients.急诊科患者中的物质使用和无家可归问题。
Drug Alcohol Depend. 2018 Jul 1;188:328-333. doi: 10.1016/j.drugalcdep.2018.04.021. Epub 2018 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验