Suppr超能文献

一种基于人工智能和远程医疗的筛查工具,用于从彩色眼底图像中识别青光眼疑似患者。

An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging.

作者信息

Bhuiyan Alauddin, Govindaiah Arun, Smith R Theodore

机构信息

iHealthscreen Inc., New York, NY, USA.

New York Eye and Ear Infirmary, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

J Ophthalmol. 2021 May 28;2021:6694784. doi: 10.1155/2021/6694784. eCollection 2021.

Abstract

RESULTS

The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85).

CONCLUSIONS

Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings.

摘要

结果

该系统的准确率为89.67%(灵敏度为83.33%;特异度为93.89%;曲线下面积为0.93)。为进行外部验证,使用了用于青光眼分析的视网膜眼底图像数据库数据集,该数据集有638张可分级质量的图像。在此,该模型的准确率为83.54%(灵敏度为80.11%;特异度为84.96%;曲线下面积为0.85)。

结论

我们已展示了一种可部署在远程医疗平台上的准确且全自动的青光眼疑似病例筛查系统,我们计划开展前瞻性试验以确定该系统在初级保健环境中的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa43/8179760/0b52b966238d/joph2021-6694784.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验