Suppr超能文献

电路量子电动力学中的双曲格子。

Hyperbolic lattices in circuit quantum electrodynamics.

机构信息

Department of Electrical Engineering, Princeton University, Princeton, NJ, USA.

Princeton Center for Complex Materials, Princeton University, Princeton, NJ, USA.

出版信息

Nature. 2019 Jul;571(7763):45-50. doi: 10.1038/s41586-019-1348-3. Epub 2019 Jul 3.

Abstract

After two decades of development, cavity quantum electrodynamics with superconducting circuits has emerged as a rich platform for quantum computation and simulation. Lattices of coplanar waveguide resonators constitute artificial materials for microwave photons, in which interactions between photons can be incorporateded either through the use of nonlinear resonator materials or through coupling between qubits and resonators. Here we make use of the previously overlooked property that these lattice sites are deformable and permit tight-binding lattices that are unattainable even in solid-state systems. We show that networks of coplanar waveguide resonators can create a class of materials that constitute lattices in an effective hyperbolic space with constant negative curvature. We present numerical simulations of hyperbolic analogues of the kagome lattice that show unusual densities of states in which a macroscopic number of degenerate eigenstates comprise a spectrally isolated flat band. We present a proof-of-principle experimental realization of one such lattice. This paper represents a step towards on-chip quantum simulation of materials science and interacting particles in curved space.

摘要

经过二十年的发展,超导电路的腔量子电动力学已经成为量子计算和模拟的丰富平台。共面波导谐振器的晶格构成了微波光子的人工材料,其中光子之间的相互作用可以通过使用非线性谐振器材料或通过量子比特和谐振器之间的耦合来实现。在这里,我们利用以前被忽视的性质,即这些晶格位置是可变形的,并允许形成紧束缚晶格,即使在固态系统中也无法实现。我们表明,共面波导谐振器网络可以创建一类材料,这些材料在具有恒定负曲率的有效双曲空间中构成晶格。我们提出了 kagome 晶格的双曲类似物的数值模拟,显示了不寻常的态密度,其中宏观数量的简并本征态组成了谱隔离的平带。我们提出了这种晶格的原理验证实验实现。本文代表了在曲面上进行材料科学和相互作用粒子的芯片上量子模拟的一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验