School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia.
The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia.
Plant Cell. 2021 Aug 31;33(8):2776-2793. doi: 10.1093/plcell/koab148.
Malate oxidation by plant mitochondria enables the generation of both oxaloacetate and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here, we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its putative orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis thaliana mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis was largely maintained except for alanine and glutamate, indicating that transamination contributes to the restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.
植物线粒体中的苹果酸氧化使草酰乙酸和丙酮酸都能生成三羧酸 (TCA) 循环功能,这可能使植物不需要将丙酮酸运进线粒体。在这里,我们发现,缺失线粒体丙酮酸载体 1 (MPC1) 会导致其假定的同源物 MPC3/MPC4 的共同丧失,并消除了丙酮酸向拟南芥线粒体的转运,证明它对 MPC 复合物的功能是必需的。虽然缺失 MPC 或线粒体丙酮酸生成 NAD-苹果酸酶 (NAD-ME) 都不会导致营养生长表型,但两者的缺失都会降低植物的生长,并导致细胞内丙酮酸水平升高,表明呼吸代谢受阻,以及在夜间支链氨基酸水平升高,这是呼吸替代底物供应的标志。缺乏 MPC 的叶片用 13C-丙酮酸进行喂养表明,代谢稳态基本保持不变,除了丙氨酸和谷氨酸,这表明转氨基作用通过将丙酮酸独立于 MPC 递送到基质中,有助于将代谢网络恢复到运行平衡。当 MPC1 缺失时,丙氨酸氨基转移酶的抑制会导致拟南芥的表型极其滞后,这表明所有提供丙酮酸的酶协同作用,以支持 TCA 循环,从而维持植物的持续生长。