Suppr超能文献

线粒体丙酮酸载体(MPC)复合物介导三种提供丙酮酸的途径之一,以维持拟南芥的呼吸代谢。

The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism.

机构信息

School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia.

The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia.

出版信息

Plant Cell. 2021 Aug 31;33(8):2776-2793. doi: 10.1093/plcell/koab148.

Abstract

Malate oxidation by plant mitochondria enables the generation of both oxaloacetate and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here, we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its putative orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis thaliana mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis was largely maintained except for alanine and glutamate, indicating that transamination contributes to the restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.

摘要

植物线粒体中的苹果酸氧化使草酰乙酸和丙酮酸都能生成三羧酸 (TCA) 循环功能,这可能使植物不需要将丙酮酸运进线粒体。在这里,我们发现,缺失线粒体丙酮酸载体 1 (MPC1) 会导致其假定的同源物 MPC3/MPC4 的共同丧失,并消除了丙酮酸向拟南芥线粒体的转运,证明它对 MPC 复合物的功能是必需的。虽然缺失 MPC 或线粒体丙酮酸生成 NAD-苹果酸酶 (NAD-ME) 都不会导致营养生长表型,但两者的缺失都会降低植物的生长,并导致细胞内丙酮酸水平升高,表明呼吸代谢受阻,以及在夜间支链氨基酸水平升高,这是呼吸替代底物供应的标志。缺乏 MPC 的叶片用 13C-丙酮酸进行喂养表明,代谢稳态基本保持不变,除了丙氨酸和谷氨酸,这表明转氨基作用通过将丙酮酸独立于 MPC 递送到基质中,有助于将代谢网络恢复到运行平衡。当 MPC1 缺失时,丙氨酸氨基转移酶的抑制会导致拟南芥的表型极其滞后,这表明所有提供丙酮酸的酶协同作用,以支持 TCA 循环,从而维持植物的持续生长。

相似文献

2
Mitochondrial Pyruvate Carriers Prevent Cadmium Toxicity by Sustaining the TCA Cycle and Glutathione Synthesis.
Plant Physiol. 2019 May;180(1):198-211. doi: 10.1104/pp.18.01610. Epub 2019 Feb 15.
3
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans.
Science. 2012 Jul 6;337(6090):96-100. doi: 10.1126/science.1218099. Epub 2012 May 24.
5
Stress-seventy subfamily A 4, A member of HSP70, confers yeast cadmium tolerance in the loss of mitochondria pyruvate carrier 1.
Plant Signal Behav. 2020;15(2):1719312. doi: 10.1080/15592324.2020.1719312. Epub 2020 Jan 27.
6
The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state.
EMBO J. 2019 May 15;38(10). doi: 10.15252/embj.2018100785. Epub 2019 Apr 12.
7
The mitochondrial pyruvate carrier regulates adipose glucose partitioning in female mice.
Mol Metab. 2024 Oct;88:102005. doi: 10.1016/j.molmet.2024.102005. Epub 2024 Aug 11.
10
Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.
J Biol Chem. 2014 May 9;289(19):13335-46. doi: 10.1074/jbc.M113.521666. Epub 2014 Mar 27.

引用本文的文献

1
Growth and Physiological Traits of Blueberry Seedlings in Response to Different Nitrogen Forms.
Plants (Basel). 2025 May 12;14(10):1444. doi: 10.3390/plants14101444.
5
Deciphering the Proteome and Phosphoproteome of Peanut ( L.) Pegs Penetrating into the Soil.
Int J Mol Sci. 2025 Jan 14;26(2):634. doi: 10.3390/ijms26020634.
7
The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants.
Int J Mol Sci. 2024 Sep 2;25(17):9542. doi: 10.3390/ijms25179542.
10
Transcriptome analysis reveals the molecular mechanism of differences in growth between photoautotrophy and heterotrophy in .
Front Plant Sci. 2024 Jun 19;15:1407915. doi: 10.3389/fpls.2024.1407915. eCollection 2024.

本文引用的文献

3
Mitochondrial pyruvate carriers are required for myocardial stress adaptation.
Nat Metab. 2020 Nov;2(11):1248-1264. doi: 10.1038/s42255-020-00288-1. Epub 2020 Oct 26.
4
Mitochondrial CLPP2 Assists Coordination and Homeostasis of Respiratory Complexes.
Plant Physiol. 2020 Sep;184(1):148-164. doi: 10.1104/pp.20.00136. Epub 2020 Jun 22.
5
Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation.
Plant Cell. 2020 Mar;32(3):666-682. doi: 10.1105/tpc.19.00157. Epub 2019 Dec 30.
7
The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state.
EMBO J. 2019 May 15;38(10). doi: 10.15252/embj.2018100785. Epub 2019 Apr 12.
8
IsoCor: isotope correction for high-resolution MS labeling experiments.
Bioinformatics. 2019 Nov 1;35(21):4484-4487. doi: 10.1093/bioinformatics/btz209.
9
Mitochondrial Pyruvate Dehydrogenase Contributes to Auxin-Regulated Organ Development.
Plant Physiol. 2019 Jun;180(2):896-909. doi: 10.1104/pp.18.01460. Epub 2019 Mar 20.
10
Mitochondrial Pyruvate Carriers Prevent Cadmium Toxicity by Sustaining the TCA Cycle and Glutathione Synthesis.
Plant Physiol. 2019 May;180(1):198-211. doi: 10.1104/pp.18.01610. Epub 2019 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验