von Rudorff Guido Falk, von Lilienfeld O Anatole
University of Vienna, Faculty of Physics, Kolingasse 14-16, 1090 Vienna, Austria.
Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, 4056 Basel, Switzerland.
Sci Adv. 2021 May 19;7(21). doi: 10.1126/sciadv.abf1173. Print 2021 May.
Brute-force compute campaigns relying on demanding ab initio calculations routinely search for previously unknown materials in chemical compound space (CCS), the vast set of all conceivable stable combinations of elements and structural configurations. Here, we demonstrate that four-dimensional chirality arising from antisymmetry of alchemical perturbations dissects CCS and defines approximate ranks, which reduce its formal dimensionality and break down its combinatorial scaling. The resulting "alchemical" enantiomers have the same electronic energy up to the third order, independent of respective covalent bond topology, imposing relevant constraints on chemical bonding. Alchemical chirality deepens our understanding of CCS and enables the establishment of trends without empiricism for any materials with fixed lattices. We demonstrate the efficacy for three cases: (i) new rules for electronic energy contributions to chemical bonding; (ii) analysis of the electron density of BN-doped benzene; and (iii) ranking over 2000 and 4 million BN-doped naphthalene and picene derivatives, respectively.
依靠高要求的从头计算进行的强力计算活动通常在化合物空间(CCS)中搜索以前未知的材料,CCS是所有可想象的元素稳定组合和结构构型的庞大集合。在这里,我们证明了由炼金术微扰的反对称性产生的四维手性剖析了CCS并定义了近似秩,这降低了其形式维度并打破了其组合缩放。由此产生的“炼金术”对映体具有相同的直至三阶的电子能量,与各自的共价键拓扑无关,对化学键施加了相关约束。炼金术手性加深了我们对CCS的理解,并能够在没有经验主义的情况下为任何具有固定晶格的材料建立趋势。我们通过三个案例证明了其有效性:(i)化学键合电子能量贡献的新规则;(ii)BN掺杂苯的电子密度分析;(iii)分别对2000多种和400万种BN掺杂萘和苝衍生物进行排名。