Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, Buenos Aires, Argentina.
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Heredity (Edinb). 2021 Aug;127(2):176-189. doi: 10.1038/s41437-021-00450-9. Epub 2021 Jun 18.
Genomic selection based on the single-step genomic best linear unbiased prediction (ssGBLUP) approach is becoming an important tool in forest tree breeding. The quality of the variance components and the predictive ability of the estimated breeding values (GEBV) depends on how well marker-based genomic relationships describe the actual genetic relationships at unobserved causal loci. We investigated the performance of GEBV obtained when fitting models with genomic covariance matrices based on two identity-by-descent (IBD) and two identity-by-state (IBS) relationship measures. Multiple-trait multiple-site ssGBLUP models were fitted to diameter and stem straightness in five open-pollinated progeny trials of Eucalyptus dunnii, genotyped using the EUChip60K. We also fitted the conventional ABLUP model with a pedigree-based covariance matrix. Estimated relationships from the IBD estimators displayed consistently lower standard deviations than those from the IBS approaches. Although ssGBLUP based in IBS estimators resulted in higher trait-site heritabilities, the gain in accuracy of the relationships using IBD estimators has resulted in higher predictive ability and lower bias of GEBV, especially for low-heritability trait-site. ssGBLUP based on IBS and IBD approaches performed considerably better than the traditional ABLUP. In summary, our results advocate the use of the ssGBLUP approach jointly with the IBD relationship matrix in open-pollinated forest tree evaluation.
基于一步法基因组最佳线性无偏预测(ssGBLUP)的基因组选择正成为林木育种的重要工具。方差分量的质量和估计育种值(GEBV)的预测能力取决于基于标记的基因组关系在未观察到的因果基因座上描述实际遗传关系的程度。我们研究了基于两种同源性-依赖(IBD)和两种同源性-状态(IBS)关系度量的基因组协方差矩阵拟合模型时获得的 GEBV 的性能。使用 EUChip60K 对 5 个硬木桉开放授粉后代试验的直径和茎直度进行了多性状多地点 ssGBLUP 模型拟合,同时还使用基于系谱的协方差矩阵拟合了常规 ABLUP 模型。IBD 估计器的估计关系的标准差始终低于 IBS 方法的估计关系。虽然基于 IBS 估计器的 ssGBLUP 导致更高的性状-地点遗传力,但使用 IBD 估计器的关系准确性提高导致了更高的预测能力和 GEBV 的更低偏差,尤其是对于低遗传力性状-地点。基于 IBS 和 IBD 方法的 ssGBLUP 明显优于传统的 ABLUP。总之,我们的结果主张在开放授粉林木评估中联合使用 IBD 关系矩阵和 ssGBLUP 方法。