Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, De Los Reseros y Dr. Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina.
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Heredity (Edinb). 2022 Apr;128(4):209-224. doi: 10.1038/s41437-022-00508-2. Epub 2022 Feb 18.
Modeling environmental spatial heterogeneity can improve the efficiency of forest tree genomic evaluation. Furthermore, genotyping costs can be lowered by reducing the number of markers needed. We investigated the impact on variance components, breeding value accuracy, and bias of two phenotypic data adjustments (experimental design and autoregressive spatial models), and a relationship matrix calculated from a subset of markers selected for their ability to infer ancestry. Using a multiple-trait multiple-site single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) approach, four scenarios (2 phenotype adjustments × 2 marker sets) were applied to diameter at breast height (DBH), height (HT), and resistance to western gall rust (WGR) in four open-pollinated progeny trials of lodgepole pine, with 1490 (out of 11,188) trees genotyped with 25,099 SNPs. As a control, we fitted the conventional ABLUP model using pedigree information. The highest heritability estimates were achieved for the ABLUP followed closely by the ssGBLUP with the full marker set and using the spatial phenotype adjustments. The highest predictive ability was obtained by using a reduced marker subset (8000 SNPs) when either the spatial (DBH: 0.429, and WGR: 0.513) or design (HT: 0.467) phenotype corrections were used. No significant difference was detected in prediction bias among the six fitted models, and all values were close to 1 (0.918-1.014). Results demonstrated that selecting informative markers, such as those capturing ancestry, can improve the predictive ability. The use of spatial correlation structure increased traits' heritability and reduced prediction bias, while increases in predictive ability were trait-dependent.
建模环境空间异质性可以提高林木基因组评估的效率。此外,通过减少所需标记的数量,可以降低基因分型成本。我们研究了两种表型数据调整(实验设计和自回归空间模型)以及基于选择标记子集计算的关系矩阵对方差分量、育种值准确性和偏差的影响,这些标记子集选择用于推断祖先的能力。使用多性状多地点单步基因组最佳线性无偏预测(ssGBLUP)方法,将四个情景(2 种表型调整×2 个标记集)应用于 4 个火炬松开放授粉后代试验中的胸径(DBH)、树高(HT)和对西部榆干木蠹象抗性(WGR),1490 棵(11188 棵中的 1490 棵)树用 25099 个 SNP 进行了基因型检测。作为对照,我们使用系谱信息拟合了常规 ABLUP 模型。ABLUP 模型的遗传力估计值最高,紧随其后的是使用完整标记集和空间表型调整的 ssGBLUP 模型。当使用空间(DBH:0.429,和 WGR:0.513)或设计(HT:0.467)表型校正时,使用减少的标记子集(8000 个 SNP)可获得最高的预测能力。在六个拟合模型中,预测偏差没有显著差异,所有值都接近 1(0.918-1.014)。结果表明,选择具有信息的标记,如那些捕捉祖先的标记,可以提高预测能力。使用空间相关结构增加了性状的遗传力并降低了预测偏差,而预测能力的提高则取决于性状。