Suppr超能文献

分析秀丽隐杆线虫神经元结构和活动的方法。

Methods for analyzing neuronal structure and activity in Caenorhabditis elegans.

机构信息

Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 1041, USA.

Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.

出版信息

Genetics. 2021 Aug 9;218(4). doi: 10.1093/genetics/iyab072.

Abstract

The model research animal Caenorhabditis elegans has unique properties making it particularly advantageous for studies of the nervous system. The nervous system is composed of a stereotyped complement of neurons connected in a consistent manner. Here, we describe methods for studying nervous system structure and function. The transparency of the animal makes it possible to visualize and identify neurons in living animals with fluorescent probes. These methods have been recently enhanced for the efficient use of neuron-specific reporter genes. Because of its simple structure, for a number of years, C. elegans has been at the forefront of connectomic studies defining synaptic connectivity by electron microscopy. This field is burgeoning with new, more powerful techniques, and recommended up-to-date methods are here described that encourage the possibility of new work in C. elegans. Fluorescent probes for single synapses and synaptic connections have allowed verification of the EM reconstructions and for experimental approaches to synapse formation. Advances in microscopy and in fluorescent reporters sensitive to Ca2+ levels have opened the way to observing activity within single neurons across the entire nervous system.

摘要

秀丽隐杆线虫这种模式生物具有独特的属性,使其特别有利于神经系统的研究。神经系统由以一致方式连接的定型神经元组成。在这里,我们描述了研究神经系统结构和功能的方法。该动物的透明性使其能够使用荧光探针在活体动物中可视化和识别神经元。最近,这些方法得到了改进,以便更有效地利用神经元特异性报告基因。由于其结构简单,多年来,秀丽隐杆线虫一直处于连接组学研究的前沿,通过电子显微镜定义突触连接。这个领域正在涌现出许多新的、更强大的技术,这里描述了推荐的最新方法,鼓励在秀丽隐杆线虫中开展新的工作。用于单个突触和突触连接的荧光探针允许对 EM 重建进行验证,并进行实验方法以研究突触形成。显微镜技术和对 Ca2+ 水平敏感的荧光报告基因的进步为观察整个神经系统中单神经元的活动开辟了道路。

相似文献

1
Methods for analyzing neuronal structure and activity in Caenorhabditis elegans.
Genetics. 2021 Aug 9;218(4). doi: 10.1093/genetics/iyab072.
2
Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network.
PLoS Comput Biol. 2020 Dec 21;16(12):e1007974. doi: 10.1371/journal.pcbi.1007974. eCollection 2020 Dec.
3
The presynaptic machinery at the synapse of C. elegans.
Invert Neurosci. 2018 Mar 12;18(2):4. doi: 10.1007/s10158-018-0207-5.
5
Molecular and genetic approaches for the analysis of C. elegans neuronal development.
Methods Cell Biol. 2011;106:413-43. doi: 10.1016/B978-0-12-544172-8.00015-3.
6
Plasticity of the Electrical Connectome of C. elegans.
Cell. 2019 Feb 21;176(5):1174-1189.e16. doi: 10.1016/j.cell.2018.12.024. Epub 2019 Jan 24.
7
Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.
Biol Cell. 2013 Jun;105(6):235-50. doi: 10.1111/boc.201200069. Epub 2013 Apr 26.
8
Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.
J Neurosci. 2012 Jun 27;32(26):8778-90. doi: 10.1523/JNEUROSCI.1494-11.2012.
9
Fluorescent reporter methods.
Methods Mol Biol. 2006;351:155-73. doi: 10.1385/1-59745-151-7:155.
10
Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome.
PLoS Comput Biol. 2016 Aug 19;12(8):e1005084. doi: 10.1371/journal.pcbi.1005084. eCollection 2016 Aug.

引用本文的文献

1
2
Automated segmentation and recognition of C. elegans whole-body cells.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae324.
4
Toolkits for detailed and high-throughput interrogation of synapses in .
Elife. 2024 Jan 15;12:RP91775. doi: 10.7554/eLife.91775.
5
Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies.
Mol Neurodegener. 2023 Nov 10;18(1):82. doi: 10.1186/s13024-023-00664-x.
6
Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans.
Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyac176.

本文引用的文献

1
Natural sensory context drives diverse brain-wide activity during C. elegans mating.
Cell. 2021 Sep 30;184(20):5122-5137.e17. doi: 10.1016/j.cell.2021.08.024. Epub 2021 Sep 16.
2
Connectomes across development reveal principles of brain maturation.
Nature. 2021 Aug;596(7871):257-261. doi: 10.1038/s41586-021-03778-8. Epub 2021 Aug 4.
3
Decoding locomotion from population neural activity in moving .
Elife. 2021 Jul 29;10:e66135. doi: 10.7554/eLife.66135.
4
A nervous system-specific subnuclear organelle in Caenorhabditis elegans.
Genetics. 2021 Mar 3;217(1):1-17. doi: 10.1093/genetics/iyaa016.
5
Structural and developmental principles of neuropil assembly in C. elegans.
Nature. 2021 Mar;591(7848):99-104. doi: 10.1038/s41586-020-03169-5. Epub 2021 Feb 24.
6
A multi-scale brain map derived from whole-brain volumetric reconstructions.
Nature. 2021 Mar;591(7848):105-110. doi: 10.1038/s41586-021-03284-x. Epub 2021 Feb 24.
8
NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal Identification in C. elegans.
Cell. 2021 Jan 7;184(1):272-288.e11. doi: 10.1016/j.cell.2020.12.012. Epub 2020 Dec 29.
9
NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.
PLoS Comput Biol. 2020 Sep 14;16(9):e1008193. doi: 10.1371/journal.pcbi.1008193. eCollection 2020 Sep.
10
A connectome and analysis of the adult central brain.
Elife. 2020 Sep 7;9:e57443. doi: 10.7554/eLife.57443.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验