Suppr超能文献

基于竞争性内源 RNA 构建的自噬相互作用网络揭示了 SARS-CoV-2 感染体内的关键途径和核心基因。

Construction of an autophagy interaction network based on competitive endogenous RNA reveals the key pathways and central genes of SARS-CoV-2 infection in vivo.

机构信息

Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.

Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Microb Pathog. 2021 Sep;158:105051. doi: 10.1016/j.micpath.2021.105051. Epub 2021 Jun 19.

Abstract

As of April 1, 2021, more than 2.8 million people have died of SARS-CoV-2 infection. In addition, the mutation of virus strains that have accompanied the pandemic has brought more severe challenges to pandemic control. Host microRNAs (miRNAs) are widely involved in a variety of biological processes of coronavirus infection, including autophagy in SARS-CoV-2 infection. However, the mechanisms underlying miRNAs involved in autophagy in SARS-CoV-2 infection have not been fully elucidated. In this study, the miRNA and messenger RNA (mRNA) expression profiles of patients with SARS-CoV-2 infection were investigated based on raw data from Gene Expression Omnibus (GEO) datasets, and potential novel biomarkers of autophagy were revealed by bioinformatics analyses. We identified 32 differentially expressed miRNAs and 332 differentially expressed mRNAs in patients with SARS-CoV-2 infection. Cytokine receptor related pathways were the most enriched pathways for differentially expressed miRNAs identified by pathway analysis. Most importantly, an autophagy interaction network, which was associated with the pathological processes of SARS-CoV-2 infection, especially with the cytokine storm, was constructed. In this network, hsa-miR-340-3p, hsa-miR-652-3p, hsa-miR-4772-5p, hsa-miR-192-5p, TP53INP2, and CCR2 may be biomarkers that predict changes in mild SARS-CoV-2 infection. Some molecules, including hsa-miR-1291 and CXCR4, were considered potential targets to predict the emergence of severe symptoms in SARS-CoV-2 infection. To our knowledge, this study provided the first profile analysis of an autophagy interaction network in SARS-CoV-2 infection and revealed several novel autophagy-related biomarkers for understanding the pathogenesis of SARS-CoV-2 infection in vivo.

摘要

截至 2021 年 4 月 1 日,已有超过 280 万人死于 SARS-CoV-2 感染。此外,伴随大流行的病毒株的突变给大流行控制带来了更严峻的挑战。宿主 microRNAs(miRNAs)广泛参与冠状病毒感染的多种生物学过程,包括 SARS-CoV-2 感染中的自噬。然而,miRNAs 参与 SARS-CoV-2 感染中自噬的机制尚未完全阐明。在这项研究中,基于基因表达综合数据库(GEO)数据集的原始数据,调查了 SARS-CoV-2 感染患者的 miRNA 和信使 RNA(mRNA)表达谱,并通过生物信息学分析揭示了自噬的潜在新型生物标志物。我们在 SARS-CoV-2 感染患者中鉴定出 32 个差异表达的 miRNA 和 332 个差异表达的 mRNA。通路分析鉴定出的差异表达 miRNA 最富集的通路是细胞因子受体相关通路。最重要的是,构建了一个与 SARS-CoV-2 感染的病理过程相关,特别是与细胞因子风暴相关的自噬相互作用网络。在这个网络中,hsa-miR-340-3p、hsa-miR-652-3p、hsa-miR-4772-5p、hsa-miR-192-5p、TP53INP2 和 CCR2 可能是预测轻度 SARS-CoV-2 感染中变化的生物标志物。一些分子,包括 hsa-miR-1291 和 CXCR4,被认为是预测 SARS-CoV-2 感染中严重症状出现的潜在靶点。据我们所知,这项研究首次对 SARS-CoV-2 感染中的自噬相互作用网络进行了分析,并揭示了一些新的与自噬相关的生物标志物,有助于理解 SARS-CoV-2 感染的体内发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b10c/8213537/cfe0c3bf0cdc/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验