CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
University of Chinese Academy of Sciences, Beijing, China.
mBio. 2021 Jun 29;12(3):e0145721. doi: 10.1128/mBio.01457-21. Epub 2021 Jun 22.
Human-pathogenic species employ a plasmid-encoded type III secretion system (T3SS) to negate immune cell function during infection. A critical element in this process is the coordinated regulation of T3SS gene expression, which involves both transcriptional and posttranscriptional mechanisms. LcrQ is one of the earliest identified negative regulators of T3SS, but its regulatory mechanism is still unclear. In a previous study, we showed that LcrQ antagonizes the activation role played by the master transcriptional regulator LcrF. In this study, we confirm that LcrQ directly interacts with LcrH, the chaperone of YopD, to facilitate the negative regulatory role of the YopD-LcrH complex in repressing expression at the posttranscriptional level. Negative regulation is strictly dependent on the YopD-LcrH complex, more so than on LcrQ. The YopD-LcrH complex helps to retain cytoplasmic levels of LcrQ to facilitate the negative regulatory effect. Interestingly, RNase E and its associated protein RhlB participate in this negative regulatory loop through a direct interaction with LcrH and LcrQ. Hence, we present a negative regulatory loop that physically connects LcrQ to the posttranscriptional regulation of LcrF, and this mechanism incorporates RNase E involved in mRNA decay. All three human-pathogenic species, Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis, employ a plasmid-encoded T3SS to target immunomodulatory effectors into host immune cells. Several plasmid-encoded regulators influence T3SS control, including the master transcriptional activator LcrF, the posttranscriptional repressor YopD, and the unassigned negative regulatory factor LcrQ. Since LcrQ lacks any obvious DNA or RNA binding domains, its regulatory mechanism might be special. In this study, we screened for proteins that directly engaged with LcrQ. We found that LcrQ cooperates with LcrH of the YopD-LcrH complex to aid in the posttranscriptional repression of expression. This negative-control loop also involved the mRNA decay factor RNase E and its associated RhlB protein, which were recruited to the regulatory complex by both LcrQ and LcrH. Hence, we identify interacting components of LcrQ that shed new light on a mechanism inhibiting T3SS production and biogenesis.
人类病原体利用质粒编码的 III 型分泌系统(T3SS)在感染过程中消除免疫细胞的功能。这个过程的一个关键因素是 T3SS 基因表达的协调调控,这涉及转录和转录后机制。LcrQ 是最早被鉴定为 T3SS 负调控因子之一,但它的调控机制仍不清楚。在之前的一项研究中,我们表明 LcrQ 拮抗了主转录调节剂 LcrF 的激活作用。在这项研究中,我们证实 LcrQ 直接与 YopD 的伴侣 LcrH 相互作用,以促进 YopD-LcrH 复合物在转录后水平抑制 表达的负调控作用。负调控严格依赖于 YopD-LcrH 复合物,而不是 LcrQ。YopD-LcrH 复合物有助于维持细胞质中 LcrQ 的水平,以促进负调控效应。有趣的是,RNase E 及其相关蛋白 RhlB 通过与 LcrH 和 LcrQ 的直接相互作用参与这个负调控环。因此,我们提出了一个负调控环,将 LcrQ 与 LcrF 的转录后调控物理连接起来,这个机制包含了参与 mRNA 降解的 RNase E。三种人类病原体,鼠疫耶尔森氏菌、肠致病性大肠杆菌和假结核耶尔森氏菌,都利用质粒编码的 T3SS 将免疫调节效应物靶向宿主免疫细胞。一些质粒编码的调节剂影响 T3SS 的控制,包括主转录激活因子 LcrF、转录后抑制因子 YopD 和未分配的负调控因子 LcrQ。由于 LcrQ 缺乏任何明显的 DNA 或 RNA 结合结构域,其调控机制可能很特殊。在这项研究中,我们筛选了与 LcrQ 直接结合的蛋白质。我们发现 LcrQ 与 YopD-LcrH 复合物的 LcrH 合作,辅助 表达的转录后抑制。这个负控制环还涉及 mRNA 降解因子 RNase E 和其相关的 RhlB 蛋白,它们被 LcrQ 和 LcrH 招募到调节复合物中。因此,我们确定了 LcrQ 的相互作用成分,为抑制 T3SS 产生和生物发生的机制提供了新的见解。