Suppr超能文献

建模医院结果:内生性问题。

Modelling hospital outcome: problems with endogeneity.

机构信息

Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Woodville, Australia.

Department of Critical Care Medicine, St Vincent's Hospital (Melbourne), Fitzroy, Australia.

出版信息

BMC Med Res Methodol. 2021 Jun 21;21(1):124. doi: 10.1186/s12874-021-01251-8.

Abstract

BACKGROUND

Mortality modelling in the critical care paradigm traditionally uses logistic regression, despite the availability of estimators commonly used in alternate disciplines. Little attention has been paid to covariate endogeneity and the status of non-randomized treatment assignment. Using a large registry database, various binary outcome modelling strategies and methods to account for covariate endogeneity were explored.

METHODS

Patient mortality data was sourced from the Australian & New Zealand Intensive Society Adult Patient Database for 2016. Hospital mortality was modelled using logistic, probit and linear probability (LPM) models with intensive care (ICU) providers as fixed (FE) and random (RE) effects. Model comparison entailed indices of discrimination and calibration, information criteria (AIC and BIC) and binned residual analysis. Suspect covariate and ventilation treatment assignment endogeneity was identified by correlation between predictor variable and hospital mortality error terms, using the Stata™ "eprobit" estimator. Marginal effects were used to demonstrate effect estimate differences between probit and "eprobit" models.

RESULTS

The cohort comprised 92,693 patients from 124 intensive care units (ICU) in calendar year 2016. Patients mean age was 61.8 (SD 17.5) years, 41.6% were female and APACHE III severity of illness score 54.5(25.6); 43.7% were ventilated. Of the models considered in predicting hospital mortality, logistic regression (with or without ICU FE) and RE logistic regression dominated, more so the latter using information criteria indices. The LPM suffered from many predictions outside the unit [0,1] interval and both poor discrimination and calibration. Error terms of hospital length of stay, an independent risk of death score and ventilation status were correlated with the mortality error term. Marked differences in the ventilation mortality marginal effect was demonstrated between the probit and the "eprobit" models which were scenario dependent. Endogeneity was not demonstrated for the APACHE III score.

CONCLUSIONS

Logistic regression accounting for provider effects was the preferred estimator for hospital mortality modelling. Endogeneity of covariates and treatment variables may be identified using appropriate modelling, but failure to do so yields problematic effect estimates.

摘要

背景

在重症监护范式中,死亡率建模传统上使用逻辑回归,尽管替代学科中通常使用估计器。很少关注协变量的内生性和非随机治疗分配的状态。本研究使用大型注册数据库,探索了各种二项结果建模策略和方法来解决协变量的内生性问题。

方法

从 2016 年澳大利亚和新西兰重症监护学会成人患者数据库中获取患者死亡率数据。使用逻辑回归、概率回归和线性概率(LPM)模型对医院死亡率进行建模,其中 ICU 提供者为固定(FE)和随机(RE)效应。模型比较包括判别和校准指数、信息准则(AIC 和 BIC)和分箱残差分析。通过协变量与医院死亡率误差项之间的相关性来识别可疑的协变量和通气治疗分配的内生性,使用 Stata 软件的“eprobit”估计器。边际效应用于展示概率回归和“eprobit”模型之间的效应估计差异。

结果

该队列包括 2016 年来自 124 个 ICU 的 92693 名患者。患者平均年龄为 61.8(17.5)岁,41.6%为女性,APACHE III 疾病严重程度评分为 54.5(25.6);43.7%接受通气治疗。在所考虑的预测医院死亡率的模型中,逻辑回归(有或没有 ICU FE)和 RE 逻辑回归占主导地位,后者使用信息准则指数更为明显。LPM 存在许多预测值超出单位[0,1]区间的问题,且存在较差的判别和校准。医院住院时间、独立死亡风险评分和通气状态的误差项与死亡率误差项相关。在概率回归和“eprobit”模型之间,通气死亡率的边际效应存在显著差异,且这种差异取决于具体情况。APACHE III 评分不存在内生性。

结论

考虑提供者效应的逻辑回归是医院死亡率建模的首选估计器。可以使用适当的模型识别协变量和治疗变量的内生性,但如果不这样做,会产生有问题的效应估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8324/8215743/26e7a923a22d/12874_2021_1251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验