Suppr超能文献

针对疗效进行滴定治疗的观察性研究及与疾病严重程度相关:常用统计方法得出的误导性结果。

Observational Research for Therapies Titrated to Effect and Associated With Severity of Illness: Misleading Results From Commonly Used Statistical Methods.

机构信息

Department of Intensive Care, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.

Department of Anesthesiology, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.

出版信息

Crit Care Med. 2020 Dec;48(12):1720-1728. doi: 10.1097/CCM.0000000000004612.

Abstract

OBJECTIVES

In critically ill patients, treatment dose or intensity is often related to severity of illness and mortality risk, whereas overtreatment or undertreatment (relative to the individual need) may further increase the odds of death. We aimed to investigate how these relationships affect the results of common statistical methods used in observational studies.

DESIGN

Using Monte Carlo simulation, we generated data for 5,000 patients with a treatment dose related to the pretreatment mortality risk but with randomly distributed overtreatment or undertreatment. Significant overtreatment or undertreatment (relative to the optimal dose) further increased the mortality risk. A prognostic score that reflects the mortality risk and an outcome of death or survival was then generated. The study was analyzed: 1) using logistic regression to estimate the effect of treatment dose on outcome while controlling for prognostic score and 2) using propensity score matching and inverse probability weighting of the effect of high treatment dose on outcome. The data generation and analyses were repeated 1,500 times over sample sizes between 200 and 30,000 patients, with an increasing accuracy of the prognostic score and with different underlying assumptions.

SETTING

Computer-simulated studies.

MEASUREMENTS AND MAIN RESULTS

In the simulated 5,000-patient observational study, higher treatment dose was found to be associated with increased odds of death (p = 0.00001) while controlling for the prognostic score with logistic regression. Propensity-matched analysis led to similar results. Larger sample sizes led to equally biased estimates with narrower CIs. A perfect risk predictor negated the bias only under artificially perfect assumptions.

CONCLUSIONS

When a treatment dose is associated with severity of illness and should be dosed "enough," logistic regression, propensity score matching, and inverse probability weighting to adjust for confounding by severity of illness lead to biased results. Larger sample sizes lead to more precisely wrong estimates.

摘要

目的

在危重症患者中,治疗剂量或强度通常与疾病严重程度和死亡风险相关,而过度治疗或治疗不足(相对于个体需求)可能会进一步增加死亡的几率。我们旨在研究这些关系如何影响观察性研究中常用统计方法的结果。

设计

使用蒙特卡罗模拟,我们为 5000 名患者生成了与预处理死亡率风险相关的治疗剂量数据,但存在随机分布的过度治疗或治疗不足。显著的过度治疗或治疗不足(相对于最佳剂量)会进一步增加死亡率风险。然后生成反映死亡率风险和死亡或存活结果的预后评分。该研究进行了分析:1)使用逻辑回归估计治疗剂量对结果的影响,同时控制预后评分,2)使用倾向评分匹配和高治疗剂量对结果的逆概率加权。数据生成和分析在 200 至 30000 名患者之间的样本量重复了 1500 次,随着预后评分准确性的提高和不同的基本假设,分析结果也会有所不同。

设置

计算机模拟研究。

测量和主要结果

在模拟的 5000 例观察性研究中,发现较高的治疗剂量与死亡几率增加相关(p = 0.00001),同时通过逻辑回归控制预后评分。倾向评分匹配分析得出了类似的结果。更大的样本量导致了同样有偏差的估计,但置信区间更窄。只有在人为的完美假设下,完美的风险预测器才能消除偏差。

结论

当治疗剂量与疾病严重程度相关且应该“足量”给药时,逻辑回归、倾向评分匹配和逆概率加权来调整疾病严重程度的混杂因素会导致有偏差的结果。更大的样本量会导致更不准确的错误估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验