Suppr超能文献

采用独立控制双栅硅纳米线金属氧化物半导体场效应晶体管的三值逻辑解码器。

Ternary logic decoder using independently controlled double-gate Si-NW MOSFETs.

作者信息

Han Seong-Joo, Han Joon-Kyu, Kim Myung-Su, Yun Gyeong-Jun, Yu Ji-Man, Tcho Il-Woong, Seo Myungsoo, Lee Geon-Beom, Choi Yang-Kyu

机构信息

School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Sci Rep. 2021 Jun 21;11(1):13018. doi: 10.1038/s41598-021-92378-7.

Abstract

A ternary logic decoder (TLD) is demonstrated with independently controlled double-gate (ICDG) silicon-nanowire (Si-NW) MOSFETs to confirm a feasibility of mixed radix system (MRS). The TLD is essential component for realization of the MRS. The ICDG Si-NW MOSFET resolves the limitations of the conventional multi-threshold voltage (multi-V) schemes required for the TLD. The ICDG Si-NW MOSFETs were fabricated and characterized. Afterwards, their electrical characteristics were modeled and fitted semi-empirically with the aid of SILVACO ATLAS TCAD simulator. The circuit performance and power consumption of the TLD were analyzed using ATLAS mixed-mode TCAD simulations. The TLD showed a power-delay product of 35 aJ for a gate length (L) of 500 nm and that of 0.16 aJ for L of 14 nm. Thanks to its inherent CMOS-compatibility and scalability, the TLD based on the ICDG Si-NW MOSFETs would be a promising candidate for a MRS using ternary and binary logic.

摘要

利用独立控制的双栅(ICDG)硅纳米线(Si-NW)MOSFET演示了一种三值逻辑解码器(TLD),以证实混合基数系统(MRS)的可行性。TLD是实现MRS的关键组件。ICDG Si-NW MOSFET解决了TLD所需的传统多阈值电压(multi-V)方案的局限性。制造并表征了ICDG Si-NW MOSFET。之后,借助SILVACO ATLAS TCAD模拟器对其电学特性进行了半经验建模和拟合。使用ATLAS混合模式TCAD模拟分析了TLD的电路性能和功耗。对于500 nm的栅长(L),TLD的功率延迟积为35 aJ,对于14 nm的L,功率延迟积为0.16 aJ。由于其固有的CMOS兼容性和可扩展性,基于ICDG Si-NW MOSFET的TLD将是使用三值和二值逻辑的MRS的有前途的候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c78a/8217211/f68d683ad6b9/41598_2021_92378_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验