Department of Drug Discovery Science, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach an der Riss, Germany.
Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria.
Sci Rep. 2021 Jun 21;11(1):12973. doi: 10.1038/s41598-021-92332-7.
Phagocytosis of microbial pathogens, dying or dead cells, and cell debris is essential to maintain tissue homeostasis. Impairment of these processes is associated with autoimmunity, developmental defects and toxic protein accumulation. However, the underlying molecular mechanisms of phagocytosis remain incompletely understood. Here, we performed a genome-wide CRISPR knockout screen to systematically identify regulators involved in phagocytosis of Staphylococcus (S.) aureus by human monocytic THP-1 cells. The screen identified 75 hits including known regulators of phagocytosis, e.g. members of the actin cytoskeleton regulation Arp2/3 and WAVE complexes, as well as genes previously not associated with phagocytosis. These novel genes are involved in translational control (EIF5A and DHPS) and the UDP glycosylation pathway (SLC35A2, SLC35A3, UGCG and UXS1) and were further validated by single gene knockout experiments. Whereas the knockout of EIF5A and DHPS impaired phagocytosis, knocking out SLC35A2, SLC35A3, UGCG and UXS1 resulted in increased phagocytosis. In addition to S. aureus phagocytosis, the above described genes also modulate phagocytosis of Escherichia coli and yeast-derived zymosan A. In summary, we identified both known and unknown genetic regulators of phagocytosis, the latter providing a valuable resource for future studies dissecting the underlying molecular and cellular mechanisms and their role in human disease.
吞噬微生物病原体、死亡或濒死细胞以及细胞碎片对于维持组织内稳态至关重要。这些过程的损伤与自身免疫、发育缺陷和毒性蛋白积累有关。然而,吞噬作用的潜在分子机制仍不完全清楚。在这里,我们进行了全基因组 CRISPR 敲除筛选,以系统地鉴定参与人单核细胞 THP-1 细胞吞噬金黄色葡萄球菌 (S.) aureus 的吞噬作用的相关调节因子。该筛选鉴定出 75 个命中靶点,包括吞噬作用的已知调节因子,例如肌动蛋白细胞骨架调节 Arp2/3 和 WAVE 复合物的成员,以及以前与吞噬作用无关的基因。这些新基因参与翻译控制(EIF5A 和 DHPS)和 UDP 糖基化途径(SLC35A2、SLC35A3、UGCG 和 UXS1),并通过单基因敲除实验进一步验证。尽管 EIF5A 和 DHPS 的敲除会损害吞噬作用,但敲除 SLC35A2、SLC35A3、UGCG 和 UXS1 会导致吞噬作用增加。除了 S. aureus 的吞噬作用外,上述描述的基因还调节大肠杆菌和酵母来源的zymosan A 的吞噬作用。总之,我们鉴定了吞噬作用的已知和未知遗传调节因子,后者为进一步研究其在人类疾病中的潜在分子和细胞机制及其作用提供了有价值的资源。