Suppr超能文献

基于共振拉曼强度的视紫红质中视黄醛发色团的激发态结构与异构化动力学

Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.

作者信息

Loppnow G R, Mathies R A

机构信息

Department of Chemistry, University of California, Berkeley 94720.

出版信息

Biophys J. 1988 Jul;54(1):35-43. doi: 10.1016/S0006-3495(88)82928-X.

Abstract

Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates.

摘要

利用457.9至647.1 nm范围内的激发波长,测量了牛视觉色素视紫红质的共振拉曼激发谱。使用激发态含时波包传播技术,对吸收光谱和共振拉曼激发谱进行了完整的弗兰克-康登分析。这使我们能够确定视紫红质的11-顺式视黄醛质子化席夫碱发色团在电子激发时沿25个正则坐标的几何结构变化。在98、135、249、336和461 cm-1处观察到强烈的低频拉曼线,其强度提供了有关导致异构化的激发态扭转变形的定量、模式特异性信息。视紫红质吸收带宽度的主要贡献来自1549 cm-1乙烯正则模式下的弗兰克-康登进展。吸收光谱中缺乏振动结构表明是由低频扭转模式的广泛进展、较大的均匀线宽(半高宽170 cm-1)以及低频模式的热占据和非均匀位点分布效应共同导致的。视紫红质的共振拉曼截面异常微弱,因为激发态波包沿着骨架拉伸和扭转坐标迅速(约35 fs)且永久地远离弗兰克-康登几何结构。

相似文献

4
A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin.
Biochemistry. 1987 Nov 17;26(23):7418-26. doi: 10.1021/bi00397a033.
5
Ultrafast spectroscopy of the visual pigment rhodopsin.
Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9809-12. doi: 10.1073/pnas.88.21.9809.
6
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin.
Biochemistry. 1987 Nov 17;26(23):7426-30. doi: 10.1021/bi00397a034.
9
Resonance Raman examination of the wavelength regulation mechanism in human visual pigments.
Biochemistry. 1997 Jun 3;36(22):6577-87. doi: 10.1021/bi970322o.

引用本文的文献

1
A molecular movie of ultrafast singlet fission.
Nat Commun. 2019 Sep 16;10(1):4207. doi: 10.1038/s41467-019-12220-7.
3
Relationship between Excited State Lifetime and Isomerization Quantum Yield in Animal Rhodopsins: Beyond the One-Dimensional Landau-Zener Model.
J Phys Chem Lett. 2018 Jun 21;9(12):3315-3322. doi: 10.1021/acs.jpclett.8b01062. Epub 2018 Jun 6.
4
The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?
PLoS One. 2016 Mar 7;11(3):e0148336. doi: 10.1371/journal.pone.0148336. eCollection 2016.
5
Local vibrational coherences drive the primary photochemistry of vision.
Nat Chem. 2015 Dec;7(12):980-6. doi: 10.1038/nchem.2398. Epub 2015 Nov 16.
6
Photochemistry: A coherent picture of vision.
Nat Chem. 2015 Dec;7(12):945-7. doi: 10.1038/nchem.2406.
9
Thermal activation and photoactivation of visual pigments.
Biophys J. 2004 Jun;86(6):3653-62. doi: 10.1529/biophysj.103.035626.
10
The molecular basis for the high photosensitivity of rhodopsin.
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14639-44. doi: 10.1073/pnas.2536769100. Epub 2003 Dec 1.

本文引用的文献

1
Early picosecond events in the photocycle of bacteriorhodopsin.
Biophys J. 1986 Mar;49(3):651-62. doi: 10.1016/S0006-3495(86)83692-X.
2
Pre-lumirhodopsin and the bleaching of visual pigments.
Nature. 1963 Mar 30;197:1279-86. doi: 10.1038/1971279a0.
3
Retinal chromophore of rhodopsin photoisomerizes within picoseconds.
Science. 1981 Feb 27;211(4485):942-4. doi: 10.1126/science.7466366.
4
Interpretation of the resonance Raman spectrum of bathorhodopsin based on visual pigment analogues.
Biochemistry. 1980 May 27;19(11):2410-8. doi: 10.1021/bi00552a020.
6
Photophysics of light transduction in rhodopsin and bacteriorhodopsin.
Annu Rev Biophys Bioeng. 1981;10:315-54. doi: 10.1146/annurev.bb.10.060181.001531.
7
Fourier transform infrared difference spectra of intermediates in rhodopsin bleaching.
Science. 1983 Mar 18;219(4590):1333-5. doi: 10.1126/science.6828860.
8
Fluorescence quantum yield of visual pigments: evidence for subpicosecond isomerization rates.
Proc Natl Acad Sci U S A. 1984 Aug;81(15):4790-4. doi: 10.1073/pnas.81.15.4790.
10
Formation and decay of prelumirhodopsin at room temperatures.
Proc Natl Acad Sci U S A. 1972 Oct;69(10):2802-6. doi: 10.1073/pnas.69.10.2802.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验