Young Jean-Gabriel, Valdovinos Fernanda S, Newman M E J
Department of Computer Science, University of Vermont, Burlington, VT, USA.
Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA.
Nat Commun. 2021 Jun 23;12(1):3911. doi: 10.1038/s41467-021-24149-x.
Empirical measurements of ecological networks such as food webs and mutualistic networks are often rich in structure but also noisy and error-prone, particularly for rare species for which observations are sparse. Focusing on the case of plant-pollinator networks, we here describe a Bayesian statistical technique that allows us to make accurate estimates of network structure and ecological metrics from such noisy observational data. Our method yields not only estimates of these quantities, but also estimates of their statistical errors, paving the way for principled statistical analyses of ecological variables and outcomes. We demonstrate the use of the method with an application to previously published data on plant-pollinator networks in the Seychelles archipelago and Kosciusko National Park, calculating estimates of network structure, network nestedness, and other characteristics.
对诸如食物网和互利网络等生态网络进行的实证测量通常结构丰富,但也存在噪声且容易出错,特别是对于那些观测稀少的稀有物种而言。以植物 - 传粉者网络为例,我们在此描述一种贝叶斯统计技术,该技术使我们能够从这类有噪声的观测数据中准确估计网络结构和生态指标。我们的方法不仅能得出这些量的估计值,还能得出其统计误差的估计值,为生态变量和结果的原则性统计分析铺平了道路。我们通过将该方法应用于先前发表的关于塞舌尔群岛和科修斯科国家公园植物 - 传粉者网络的数据,展示了该方法的使用,计算了网络结构、网络嵌套性及其他特征的估计值。