Suppr超能文献

解读概率性物种相互作用网络

Deciphering Probabilistic Species Interaction Networks.

作者信息

Banville Francis, Strydom Tanya, Blyth Penelope S A, Brimacombe Chris, Catchen Michael D, Dansereau Gabriel, Higino Gracielle, Malpas Thomas, Mayall Hana, Norman Kari, Gravel Dominique, Poisot Timothée

机构信息

Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada.

Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada.

出版信息

Ecol Lett. 2025 Jun;28(6):e70161. doi: 10.1111/ele.70161.

Abstract

Representing species interactions probabilistically as opposed to deterministically conveys uncertainties in our knowledge of interactions. The sources of uncertainty captured by interaction probabilities depend on the method used to evaluate them: uncertainty of predictive models, subjective assessment of experts, or empirical measurement of interaction spatiotemporal variability. However, guidelines for the estimation and documentation of probabilistic interaction data are lacking. This is concerning because our understanding of interaction probabilities depend on their sometimes elusive definition and uncertainty sources. We review how probabilistic interactions are defined at different spatial scales. These definitions are based on the distinction between the realisation of an interaction at a specific time and space (local networks) and its biological or ecological feasibility (metaweb). Using host-parasite interactions in Europe, we illustrate how these two network representations differ in their statistical properties, specifically: how local networks and metawebs differ in their spatial and temporal scaling of interactions. We present two approaches to inferring binary interactions from probabilistic ones that account for these differences and show that systematic biases arise when directly inferring local networks from metawebs. Our results underscore the importance of more rigorous descriptions of probabilistic species interactions that specify their conditional variables and uncertainty sources.

摘要

与确定性地表示物种相互作用相反,概率性地表示物种相互作用传达了我们对相互作用认识中的不确定性。由相互作用概率所捕捉到的不确定性来源取决于用于评估它们的方法:预测模型的不确定性、专家的主观评估或相互作用时空变异性的实证测量。然而,目前缺乏关于概率性相互作用数据估计和记录的指南。这令人担忧,因为我们对相互作用概率的理解取决于它们有时难以捉摸的定义和不确定性来源。我们回顾了概率性相互作用在不同空间尺度上是如何定义的。这些定义基于在特定时间和空间(局部网络)实现的相互作用与其生物学或生态可行性(元网络)之间的区别。利用欧洲的宿主 - 寄生虫相互作用,我们说明了这两种网络表示在统计特性上是如何不同的,具体而言:局部网络和元网络在相互作用的空间和时间尺度上是如何不同的。我们提出了两种从概率性相互作用推断二元相互作用的方法,这些方法考虑了这些差异,并表明直接从元网络推断局部网络时会出现系统偏差。我们的结果强调了更严格描述概率性物种相互作用的重要性,这种描述要明确其条件变量和不确定性来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb67/12200232/ce33179d43a2/ELE-28-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验