一个转录开关控制着心脏病中纤维母细胞的激活。
A transcriptional switch governs fibroblast activation in heart disease.
机构信息
Gladstone Institutes, San Francisco, CA, USA.
Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
出版信息
Nature. 2021 Jul;595(7867):438-443. doi: 10.1038/s41586-021-03674-1. Epub 2021 Jun 23.
In diseased organs, stress-activated signalling cascades alter chromatin, thereby triggering maladaptive cell state transitions. Fibroblast activation is a common stress response in tissues that worsens lung, liver, kidney and heart disease, yet its mechanistic basis remains unclear. Pharmacological inhibition of bromodomain and extra-terminal domain (BET) proteins alleviates cardiac dysfunction, providing a tool to interrogate and modulate cardiac cell states as a potential therapeutic approach. Here we use single-cell epigenomic analyses of hearts dynamically exposed to BET inhibitors to reveal a reversible transcriptional switch that underlies the activation of fibroblasts. Resident cardiac fibroblasts demonstrated robust toggling between the quiescent and activated state in a manner directly correlating with BET inhibitor exposure and cardiac function. Single-cell chromatin accessibility revealed previously undescribed DNA elements, the accessibility of which dynamically correlated with cardiac performance. Among the most dynamic elements was an enhancer that regulated the transcription factor MEOX1, which was specifically expressed in activated fibroblasts, occupied putative regulatory elements of a broad fibrotic gene program and was required for TGFβ-induced fibroblast activation. Selective CRISPR inhibition of the single most dynamic cis-element within the enhancer blocked TGFβ-induced Meox1 activation. We identify MEOX1 as a central regulator of fibroblast activation associated with cardiac dysfunction and demonstrate its upregulation after activation of human lung, liver and kidney fibroblasts. The plasticity and specificity of BET-dependent regulation of MEOX1 in tissue fibroblasts provide previously unknown trans- and cis-targets for treating fibrotic disease.
在病变器官中,应激激活的信号级联改变染色质,从而触发适应性细胞状态转变。成纤维细胞激活是组织中常见的应激反应,会使肺部、肝脏、肾脏和心脏疾病恶化,但它的机制基础仍不清楚。溴结构域和末端结构域(BET)蛋白的药理学抑制可缓解心脏功能障碍,为研究和调节心脏细胞状态提供了一种潜在的治疗方法。在这里,我们使用对动态暴露于 BET 抑制剂的心脏进行单细胞表观基因组分析,揭示了潜在成纤维细胞激活的可逆转录开关。驻留的心脏成纤维细胞以与 BET 抑制剂暴露和心脏功能直接相关的方式,在静止和激活状态之间表现出强大的切换。单细胞染色质可及性揭示了以前未描述的 DNA 元件,其可及性与心脏性能动态相关。在最动态的元件中,有一个增强子,它调节转录因子 MEOX1 的表达,该因子特异性表达在激活的成纤维细胞中,占据广泛纤维化基因程序的假定调节元件,并需要 TGFβ 诱导的成纤维细胞激活。选择性 CRISPR 抑制增强子内单个最动态的顺式元件可阻断 TGFβ 诱导的 Meox1 激活。我们将 MEOX1 鉴定为与心脏功能障碍相关的成纤维细胞激活的核心调节剂,并证明其在人肺、肝和肾成纤维细胞激活后上调。BET 依赖性调节 MEOX1 在组织成纤维细胞中的可塑性和特异性为治疗纤维化疾病提供了以前未知的顺式和反式靶标。