Suppr超能文献

使用强还原性铱光敏剂对未活化底物进行光氧化还原催化。

Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers.

作者信息

Shon Jong-Hwa, Kim Dooyoung, Rathnayake Manjula D, Sittel Steven, Weaver Jimmie, Teets Thomas S

机构信息

Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA

Department of Chemistry, Oklahoma State University 107, Physical Science Stillwater OK 74078 USA.

出版信息

Chem Sci. 2021 Jan 29;12(11):4069-4078. doi: 10.1039/d0sc06306a.

Abstract

Photoredox catalysis has emerged as a powerful strategy in synthetic organic chemistry, but substrates that are difficult to reduce either require complex reaction conditions or are not amenable at all to photoredox transformations. In this work, we show that strong bis-cyclometalated iridium photoreductants with electron-rich β-diketiminate (NacNac) ancillary ligands enable high-yielding photoredox transformations of challenging substrates with very simple reaction conditions that require only a single sacrificial reagent. Using blue or green visible-light activation we demonstrate a variety of reactions, which include hydrodehalogenation, cyclization, intramolecular radical addition, and prenylation radical-mediated pathways, with optimized conditions that only require the photocatalyst and a sacrificial reductant/hydrogen atom donor. Many of these reactions involve organobromide and organochloride substrates which in the past have had limited utility in photoredox catalysis. This work paves the way for the continued expansion of the substrate scope in photoredox catalysis.

摘要

光氧化还原催化已成为有机合成化学中的一种强大策略,但难以还原的底物要么需要复杂的反应条件,要么根本不适合光氧化还原转化。在这项工作中,我们表明,具有富电子β-二酮亚胺(NacNac)辅助配体的强双环金属化铱光还原剂,能够在非常简单的反应条件下实现具有挑战性底物的高产率光氧化还原转化,这些条件仅需一种牺牲试剂。通过蓝色或绿色可见光活化,我们展示了多种反应,包括加氢脱卤、环化、分子内自由基加成和异戊烯基化等自由基介导的途径,其优化条件仅需光催化剂和一种牺牲还原剂/氢原子供体。这些反应中有许多涉及有机溴化物和有机氯化物底物,而它们过去在光氧化还原催化中的应用有限。这项工作为光氧化还原催化中底物范围的持续扩展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb54/8179447/4a5ddc68fd28/d0sc06306a-f1.jpg

相似文献

1
Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers.
Chem Sci. 2021 Jan 29;12(11):4069-4078. doi: 10.1039/d0sc06306a.
2
Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers.
Chem Sci. 2023 Aug 18;14(35):9526-9532. doi: 10.1039/d3sc03000h. eCollection 2023 Sep 13.
3
Potent Bis-Cyclometalated Iridium Photoreductants with β-Diketiminate Ancillary Ligands.
Inorg Chem. 2017 Dec 18;56(24):15295-15303. doi: 10.1021/acs.inorgchem.7b02859. Epub 2017 Nov 27.
4
Merging Visible Light Photoredox and Gold Catalysis.
Acc Chem Res. 2016 Oct 18;49(10):2261-2272. doi: 10.1021/acs.accounts.6b00351. Epub 2016 Sep 9.
5
Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
Acc Chem Res. 2017 Feb 21;50(2):320-330. doi: 10.1021/acs.accounts.6b00586. Epub 2017 Jan 27.
6
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
7
Visible Light Mediated Photoredox Catalytic Arylation Reactions.
Acc Chem Res. 2016 Aug 16;49(8):1566-77. doi: 10.1021/acs.accounts.6b00229. Epub 2016 Aug 2.
8
Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
Acc Chem Res. 2022 May 3;55(9):1290-1300. doi: 10.1021/acs.accounts.2c00075. Epub 2022 Apr 12.
9
Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis.
Acc Chem Res. 2016 Oct 18;49(10):2284-2294. doi: 10.1021/acs.accounts.6b00248. Epub 2016 Sep 14.
10
Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry.
Nat Protoc. 2018 Apr;13(4):605-632. doi: 10.1038/nprot.2017.138. Epub 2018 Mar 1.

引用本文的文献

1
Structural Control of Metal-Centered Excited States in Cobalt(III) Complexes via Bite Angle and π-π Interactions.
J Am Chem Soc. 2025 Aug 13;147(32):29444-29456. doi: 10.1021/jacs.5c09616. Epub 2025 Jul 30.
2
Design of aminoanthraquinone-based heterogeneous photocatalysts for visible-light-driven reactions and antibacterial applications.
RSC Adv. 2025 Jul 11;15(30):24393-24405. doi: 10.1039/d5ra03539b. eCollection 2025 Jul 10.
3
Nickel-Catalyzed Hydro- and Deutero-dehalogenations of (Hetero)Aryl Halides under Aqueous Micellar Catalysis Conditions.
ChemSusChem. 2025 Jun 2;18(11):e202500043. doi: 10.1002/cssc.202500043. Epub 2025 Apr 24.
4
Tuning the Efficiency of Iridium(III) Complexes for Energy Transfer (EnT) Catalysis through Ligand Design.
Chemistry. 2025 Mar 25;31(18):e202403309. doi: 10.1002/chem.202403309. Epub 2025 Feb 25.
5
Co-Catalytic Coupling of Alkyl Halides and Alkenes: the Curious Role of Lutidine.
J Am Chem Soc. 2025 Feb 12;147(6):5238-5246. doi: 10.1021/jacs.4c15812. Epub 2025 Feb 2.
7
Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion.
J Am Chem Soc. 2024 Apr 10;146(16):11299-318. doi: 10.1021/jacs.4c00605.
8
Improved transition metal photosensitizers to drive advances in photocatalysis.
Chem Sci. 2023 Nov 24;15(1):77-94. doi: 10.1039/d3sc04580c. eCollection 2023 Dec 20.
10
Exploiting Visible Light Triggered Formation of -Cyclohexene for the Contra-thermodynamic Protection of Alcohols.
Org Lett. 2023 Oct 13;25(40):7316-7321. doi: 10.1021/acs.orglett.3c02666. Epub 2023 Sep 29.

本文引用的文献

1
Organophotoredox Hydrodefluorination of Trifluoromethylarenes with Translational Applicability to Drug Discovery.
J Am Chem Soc. 2020 May 20;142(20):9181-9187. doi: 10.1021/jacs.0c03881. Epub 2020 May 11.
2
Hydroarylation of Arenes via Reductive Radical-Polar Crossover.
J Am Chem Soc. 2020 May 20;142(20):9163-9168. doi: 10.1021/jacs.0c03926. Epub 2020 May 11.
3
Discovery and characterization of an acridine radical photoreductant.
Nature. 2020 Apr;580(7801):76-80. doi: 10.1038/s41586-020-2131-1. Epub 2020 Apr 1.
4
Visible-Light-Induced, Base-Promoted Transition-Metal-Free Dehalogenation of Aryl Fluorides, Chlorides, Bromides, and Iodides.
Org Lett. 2020 Apr 17;22(8):3084-3088. doi: 10.1021/acs.orglett.0c00827. Epub 2020 Mar 31.
5
Reactivity control of a photocatalytic system by changing the light intensity.
Chem Sci. 2019 Oct 30;10(48):11023-11029. doi: 10.1039/c9sc04584h. eCollection 2019 Dec 28.
6
Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling.
J Am Chem Soc. 2020 Feb 5;142(5):2093-2099. doi: 10.1021/jacs.9b12328. Epub 2020 Jan 17.
7
Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials.
J Am Chem Soc. 2020 Feb 5;142(5):2087-2092. doi: 10.1021/jacs.9b10678. Epub 2020 Jan 17.
8
Visible-Light-Induced Selective Defluoroborylation of Polyfluoroarenes, gem-Difluoroalkenes, and Trifluoromethylalkenes.
Angew Chem Int Ed Engl. 2020 Mar 2;59(10):4009-4016. doi: 10.1002/anie.201911819. Epub 2020 Jan 23.
9
Photoinduced Radical Borylation of Alkyl Bromides Catalyzed by 4-Phenylpyridine.
Angew Chem Int Ed Engl. 2020 Jan 27;59(5):2095-2099. doi: 10.1002/anie.201912564. Epub 2019 Dec 12.
10
The Tandem Photoredox Catalysis Mechanism of [Ir(ppy)(dtb-bpy)] Enabling Access to Energy Demanding Organic Substrates.
J Am Chem Soc. 2019 Nov 6;141(44):17646-17658. doi: 10.1021/jacs.9b07370. Epub 2019 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验