Schmidt-Erfurth Ursula, Reiter Gregor S, Riedl Sophie, Seeböck Philipp, Vogl Wolf-Dieter, Blodi Barbara A, Domalpally Amitha, Fawzi Amani, Jia Yali, Sarraf David, Bogunović Hrvoje
Department of Ophthalmology Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
Fundus Photograph Reading Center, Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
Prog Retin Eye Res. 2022 Jan;86:100972. doi: 10.1016/j.preteyeres.2021.100972. Epub 2021 Jun 22.
Retinal fluid as the major biomarker in exudative macular disease is accurately visualized by high-resolution three-dimensional optical coherence tomography (OCT), which is used world-wide as a diagnostic gold standard largely replacing clinical examination. Artificial intelligence (AI) with its capability to objectively identify, localize and quantify fluid introduces fully automated tools into OCT imaging for personalized disease management. Deep learning performance has already proven superior to human experts, including physicians and certified readers, in terms of accuracy and speed. Reproducible measurement of retinal fluid relies on precise AI-based segmentation methods that assign a label to each OCT voxel denoting its fluid type such as intraretinal fluid (IRF) and subretinal fluid (SRF) or pigment epithelial detachment (PED) and its location within the central 1-, 3- and 6-mm macular area. Such reliable analysis is most relevant to reflect differences in pathophysiological mechanisms and impacts on retinal function, and the dynamics of fluid resolution during therapy with different regimens and substances. Yet, an in-depth understanding of the mode of action of supervised and unsupervised learning, the functionality of a convolutional neural net (CNN) and various network architectures is needed. Greater insight regarding adequate methods for performance, validation assessment, and device- and scanning-pattern-dependent variations is necessary to empower ophthalmologists to become qualified AI users. Fluid/function correlation can lead to a better definition of valid fluid variables relevant for optimal outcomes on an individual and a population level. AI-based fluid analysis opens the way for precision medicine in real-world practice of the leading retinal diseases of modern times.
视网膜液作为渗出性黄斑疾病的主要生物标志物,通过高分辨率三维光学相干断层扫描(OCT)能够被精确可视化,OCT在全球范围内被用作诊断金标准,在很大程度上取代了临床检查。人工智能(AI)具备客观识别、定位和量化液体的能力,将全自动工具引入OCT成像以实现个性化疾病管理。在准确性和速度方面,深度学习的性能已被证明优于包括医生和认证阅片者在内的人类专家。视网膜液的可重复测量依赖于基于精确人工智能的分割方法,该方法为每个OCT体素分配一个标签,以表示其液体类型,如视网膜内液(IRF)和视网膜下液(SRF)或色素上皮脱离(PED),以及其在中心1毫米、3毫米和6毫米黄斑区域内的位置。这种可靠的分析对于反映病理生理机制的差异以及对视网膜功能的影响,以及不同治疗方案和药物治疗期间液体消退的动态变化最为相关。然而,需要深入了解监督学习和无监督学习的作用方式、卷积神经网络(CNN)的功能以及各种网络架构。对于性能、验证评估以及与设备和扫描模式相关的变化的适当方法有更深入的了解,对于使眼科医生成为合格的人工智能用户是必要的。液体/功能相关性可以更好地定义与个体和群体水平上的最佳结果相关的有效液体变量。基于人工智能的液体分析为现代主要视网膜疾病的实际临床实践中的精准医学开辟了道路。