文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三维(3D)激光诱导石墨烯:结构、性质及其在化学传感中的应用

Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing.

作者信息

Vivaldi Federico Maria, Dallinger Alexander, Bonini Andrea, Poma Noemi, Sembranti Lorenzo, Biagini Denise, Salvo Pietro, Greco Francesco, Di Francesco Fabio

机构信息

Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy.

Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy.

出版信息

ACS Appl Mater Interfaces. 2021 Jul 7;13(26):30245-30260. doi: 10.1021/acsami.1c05614. Epub 2021 Jun 24.


DOI:10.1021/acsami.1c05614
PMID:34167302
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8289247/
Abstract

Notwithstanding its relatively recent discovery, graphene has gone through many evolution steps and inspired a multitude of applications in many fields, from electronics to life science. The recent advancements in graphene production and patterning, and the inclusion of two-dimensional (2D) graphenic materials in three-dimensional (3D) superstructures, further extended the number of potential applications. In this Review, we focus on laser-induced graphene (LIG), an intriguing 3D porous graphenic material produced by direct laser scribing of carbonaceous precursors, and on its applications in chemical sensors and biosensors. LIG can be shaped in different 3D forms with a high surface-to-volume ratio, which is a valuable characteristic for sensors that typically rely on phenomena occurring at surfaces and interfaces. Herein, an overview of LIG, including synthesis from various precursors, structure, and characteristic properties, is first provided. The discussion focuses especially on transport and surface properties, and on how these can be controlled by tuning the laser processing. Progresses and trends in LIG-based chemical sensors are then reviewed, discussing the various transduction mechanisms and different LIG functionalization procedures for chemical sensing. A comparative evaluation of sensors performance is then provided. Finally, sensors for glucose detection are reviewed in more detail, since they represent the vast majority of LIG-based chemical sensors.

摘要

尽管石墨烯是相对较新才被发现的,但它已经历了许多发展阶段,并在从电子学到生命科学等众多领域激发了大量应用。石墨烯生产和图案化方面的最新进展,以及将二维(2D)石墨烯材料纳入三维(3D)超结构中,进一步扩展了潜在应用的数量。在本综述中,我们重点关注激光诱导石墨烯(LIG),一种通过对含碳前驱体进行直接激光刻写而制备的有趣的三维多孔石墨烯材料,及其在化学传感器和生物传感器中的应用。LIG可以被加工成具有高比表面积的不同三维形式,这对于通常依赖于表面和界面处发生的现象的传感器来说是一个有价值的特性。本文首先提供了LIG的概述,包括从各种前驱体合成、结构和特性。讨论特别关注传输和表面性质,以及如何通过调整激光加工来控制这些性质。接着综述了基于LIG的化学传感器的进展和趋势,讨论了各种传感机制以及用于化学传感的不同LIG功能化程序。然后对传感器性能进行了比较评估。最后,对葡萄糖检测传感器进行了更详细的综述,因为它们代表了绝大多数基于LIG的化学传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/539b37ca7052/am1c05614_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/09614878f487/am1c05614_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/3550075b1b90/am1c05614_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/97e0222e8297/am1c05614_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/ba51025d4155/am1c05614_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/d6f7657d9e57/am1c05614_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/44856af5c90d/am1c05614_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/539b37ca7052/am1c05614_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/09614878f487/am1c05614_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/3550075b1b90/am1c05614_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/97e0222e8297/am1c05614_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/ba51025d4155/am1c05614_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/d6f7657d9e57/am1c05614_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/44856af5c90d/am1c05614_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/8289247/539b37ca7052/am1c05614_0010.jpg

相似文献

[1]
Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing.

ACS Appl Mater Interfaces. 2021-7-7

[2]
Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives.

ACS Nano. 2021-12-28

[3]
Laser-Induced Graphene: From Discovery to Translation.

Adv Mater. 2018-10-4

[4]
Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis.

Mikrochim Acta. 2022-1-10

[5]
Investigation of Laser-Induced Graphene (LIG) on a Flexible Substrate and Its Functionalization by Metal Doping for Gas-Sensing Applications.

Int J Mol Sci. 2024-1-18

[6]
Laser-Induced Graphene.

Acc Chem Res. 2018-7-17

[7]
Solid-state, reagent-free and one-step laser-induced synthesis of graphene-supported metal nanocomposites from metal leaves and application to glucose sensing.

Anal Chim Acta. 2023-7-11

[8]
Bioderived Laser-Induced Graphene for Sensors and Supercapacitors.

ACS Appl Mater Interfaces. 2023-8-2

[9]
Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics.

ACS Nano. 2022-12-27

[10]
Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology.

Nanomaterials (Basel). 2022-7-7

引用本文的文献

[1]
Recent Advances in Flexible and Wearable Gas Sensors Harnessing the Potential of 2D Materials.

Small Sci. 2025-6-30

[2]
Development, fabrication, and applications of laser-induced graphene-based biosensors in food and dairy sectors.

Mikrochim Acta. 2025-8-4

[3]
Additive and Laser Manufacturing for Multifunctional Electronics on High-Performance Polymers.

Small Sci. 2025-4-2

[4]
Laser-induced graphene with nickel oxide nanoparticles electrochemical immunosensor for rapid and label-free detection of Salmonella enterica Typhimurium.

Mikrochim Acta. 2025-5-17

[5]
Flexible Stretchable Strain Sensor Based on LIG/PDMS for Real-Time Health Monitoring of Test Pilots.

Sensors (Basel). 2025-5-2

[6]
Intelligent Olfactory System Utilizing Ceria Nanoparticle-Integrated Laser-Induced Graphene.

ACS Nano. 2025-5-13

[7]
In Situ Transfer of Laser-Induced Graphene Electronics for Multifunctional Smart Windows.

Small Sci. 2024-6-21

[8]
Enhanced Laser-Induced Graphene Microfluidic Integrated Sensors (LIGMIS) for On-Site Biomedical and Environmental Monitoring.

Small. 2025-8

[9]
Laser-Induced Graphene from Commercial Inks and Dyes.

Adv Sci (Weinh). 2025-4

[10]
Fabrication of heteroatom-doped graphene-porous organic polymer hybrid materials via femtosecond laser writing and their application in VOCs sensing.

Sci Rep. 2025-1-29

本文引用的文献

[1]
Transforming lignin into porous graphene direct laser writing for solid-state supercapacitors.

RSC Adv. 2019-7-23

[2]
A Comparative Study of Laser-Induced Graphene by CO Infrared Laser and 355 nm Ultraviolet (UV) Laser.

Micromachines (Basel). 2020-12-11

[3]
Laser-Induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors.

ACS Omega. 2020-6-9

[4]
Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors.

Biosens Bioelectron. 2020-9-15

[5]
Laminated Laser-Induced Graphene Composites.

ACS Nano. 2020-7-28

[6]
Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of in Chicken Broth.

ACS Sens. 2020-7-24

[7]
Highly flexible and conductive poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration.

Biosens Bioelectron. 2020-7-15

[8]
Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene.

ACS Appl Mater Interfaces. 2020-4-29

[9]
High-Resolution Laser-Induced Graphene. Flexible Electronics beyond the Visible Limit.

ACS Appl Mater Interfaces. 2020-3-4

[10]
Bean Pod-Inspired Ultrasensitive and Self-Healing Pressure Sensor Based on Laser-Induced Graphene and Polystyrene Microsphere Sandwiched Structure.

ACS Appl Mater Interfaces. 2020-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索