Suppr超能文献

深度学习在胸部 X 光分析中的应用:综述。

Deep learning for chest X-ray analysis: A survey.

机构信息

Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands.

Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands.

出版信息

Med Image Anal. 2021 Aug;72:102125. doi: 10.1016/j.media.2021.102125. Epub 2021 Jun 5.

Abstract

Recent advances in deep learning have led to a promising performance in many medical image analysis tasks. As the most commonly performed radiological exam, chest radiographs are a particularly important modality for which a variety of applications have been researched. The release of multiple, large, publicly available chest X-ray datasets in recent years has encouraged research interest and boosted the number of publications. In this paper, we review all studies using deep learning on chest radiographs published before March 2021, categorizing works by task: image-level prediction (classification and regression), segmentation, localization, image generation and domain adaptation. Detailed descriptions of all publicly available datasets are included and commercial systems in the field are described. A comprehensive discussion of the current state of the art is provided, including caveats on the use of public datasets, the requirements of clinically useful systems and gaps in the current literature.

摘要

深度学习的最新进展在许多医学图像分析任务中取得了有前景的性能。作为最常进行的放射学检查,胸部 X 光片是一种特别重要的模态,已经研究了多种应用。近年来,多个大型公开的胸部 X 射线数据集的发布激发了研究兴趣,并增加了相关出版物的数量。在本文中,我们回顾了截至 2021 年 3 月之前在胸部 X 光片上使用深度学习的所有研究,按任务对工作进行分类:图像级预测(分类和回归)、分割、定位、图像生成和域自适应。我们详细描述了所有可用的公开数据集,并介绍了该领域的商业系统。我们提供了对当前技术水平的全面讨论,包括对使用公共数据集的注意事项、对临床有用系统的要求以及当前文献中的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验