Seyed Bolouri Seyed Ehsan, Dehghan Masood, Nekoui Mahdiar, Buchanan Brian, Jaremko Jacob L, Zonoobi Dornoosh, Nagdev Arun, Kapur Jeevesh
Exo Imaging, Santa Clara, CA 95054, USA.
Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2B7, Canada.
Diagnostics (Basel). 2025 Aug 25;15(17):2145. doi: 10.3390/diagnostics15172145.
: Lung ultrasound (LUS) is a valuable tool for detecting pulmonary conditions, but its accuracy depends on user expertise. This study evaluated whether an artificial intelligence (AI) tool could improve clinician performance in detecting pleural effusion and consolidation/atelectasis on LUS scans. : In this multi-reader, multi-case study, 14 clinicians of varying experience reviewed 374 retrospectively selected LUS scans (cine clips from the PLAPS point, obtained using three different probes) from 359 patients across six centers in the U.S. and Canada. In phase one, readers scored the likelihood (0-100) of pleural effusion and consolidation/atelectasis without AI. After a 4-week washout, they re-evaluated all scans with AI-generated bounding boxes. Performance metrics included area under the curve (AUC), sensitivity, specificity, and Fleiss' Kappa. Subgroup analyses examined effects by reader experience. : For pleural effusion, AUC improved from 0.917 to 0.960, sensitivity from 77.3% to 89.1%, and specificity from 91.7% to 92.9%. Fleiss' Kappa increased from 0.612 to 0.774. For consolidation/atelectasis, AUC rose from 0.870 to 0.941, sensitivity from 70.7% to 89.2%, and specificity from 85.8% to 89.5%. Kappa improved from 0.427 to 0.756. : AI assistance enhanced clinician detection of pleural effusion and consolidation/atelectasis in LUS scans, particularly benefiting less experienced users.
肺部超声(LUS)是检测肺部疾病的一种有价值的工具,但其准确性取决于用户的专业知识。本研究评估了一种人工智能(AI)工具是否可以提高临床医生在LUS扫描中检测胸腔积液和实变/肺不张的表现。
在这项多读者、多病例研究中,14名经验各异的临床医生回顾了来自美国和加拿大六个中心的359例患者的374份回顾性选择的LUS扫描(使用三种不同探头从PLAPS点获取的动态图像)。在第一阶段,读者在没有AI辅助的情况下对胸腔积液和实变/肺不张的可能性(0 - 100)进行评分。经过4周的洗脱期后,他们使用AI生成的边界框对所有扫描进行重新评估。性能指标包括曲线下面积(AUC)、敏感性、特异性和Fleiss卡帕系数。亚组分析考察了读者经验的影响。
对于胸腔积液,AUC从0.917提高到0.960,敏感性从77.3%提高到89.1%,特异性从91.7%提高到92.9%。Fleiss卡帕系数从0.612提高到0.774。对于实变/肺不张,AUC从0.870提高到0.941,敏感性从70.7%提高到89.2%,特异性从85.8%提高到89.5%。卡帕系数从0.427提高到0.756。
AI辅助提高了临床医生在LUS扫描中对胸腔积液和实变/肺不张的检测能力,对经验较少的用户尤其有益。