Suppr超能文献

利用放射组学作为胸部 X 射线中胸部疾病分类和定位的先验知识。

Using Radiomics as Prior Knowledge for Thorax Disease Classification and Localization in Chest X-rays.

机构信息

The University of Texas at Austin, Austin, TX, USA.

Department of Radiology, Weill Cornell Medicine, New York, NY, USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:546-555. eCollection 2021.

Abstract

Chest X-ray becomes one of the most common medical diagnoses due to its noninvasiveness. The number of chest X-ray images has skyrocketed, but reading chest X-rays still have been manually performed by radiologists, which creates huge burnouts and delays. Traditionally, radiomics, as a subfield of radiology that can extract a large number of quantitative features from medical images, demonstrates its potential to facilitate medical imaging diagnosis before the deep learning era. In this paper, we develop an end-to-end framework, ChexRadiNet, that can utilize the radiomics features to improve the abnormality classification performance. Specifically, ChexRadiNet first applies a light-weight but efficient triplet-attention mechanism to classify the chest X-rays and highlight the abnormal regions. Then it uses the generated class activation map to extract radiomic features, which further guides our model to learn more robust image features. After a number of iterations and with the help of radiomic features, our framework can converge to more accurate image regions. We evaluate the ChexRadiNet framework using three public datasets: NIH ChestX-ray, CheXpert, and MIMIC-CXR. We find that ChexRadiNet outperforms the state-of-the-art on both disease detection (0.843 in AUC) and localization (0.679 in T(IoU) = 0.1). We make the code publicly available at https://github. com/bionlplab/lung_disease_detection_amia2021, with the hope that this method can facilitate the development of automatic systems with a higher-level understanding of the radiological world.

摘要

胸部 X 光检查由于其非侵入性而成为最常见的医学诊断方法之一。胸部 X 光图像的数量呈爆炸式增长,但读片仍然由放射科医生手动完成,这造成了巨大的疲劳和延误。传统上,放射组学作为放射学的一个分支,可以从医学图像中提取大量定量特征,在深度学习时代之前就展示了其促进医学成像诊断的潜力。在本文中,我们开发了一个端到端框架 ChexRadiNet,它可以利用放射组学特征来提高异常分类性能。具体来说,ChexRadiNet 首先应用一种轻量级但高效的三重注意机制来对胸部 X 光进行分类,并突出异常区域。然后,它使用生成的类激活图来提取放射组学特征,这进一步指导我们的模型学习更健壮的图像特征。经过多次迭代,并在放射组学特征的帮助下,我们的框架可以收敛到更准确的图像区域。我们使用三个公共数据集 NIH ChestX-ray、CheXpert 和 MIMIC-CXR 来评估 ChexRadiNet 框架。我们发现 ChexRadiNet 在疾病检测(AUC 为 0.843)和定位(T(IoU) = 0.1 时为 0.679)方面均优于最先进的方法。我们在 https://github.com/bionlplab/lung_disease_detection_amia2021 上公开了代码,希望该方法能够促进具有更高水平的放射学理解的自动系统的发展。

相似文献

2
PNEUMONIA DETECTION ON CHEST X-RAY USING RADIOMIC FEATURES AND CONTRASTIVE LEARNING.基于放射组学特征和对比学习的胸部X光片肺炎检测
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:247-251. doi: 10.1109/isbi48211.2021.9433853. Epub 2021 May 25.
7
Deep Mining External Imperfect Data for Chest X-Ray Disease Screening.深度挖掘胸部X光疾病筛查的外部不完美数据
IEEE Trans Med Imaging. 2020 Nov;39(11):3583-3594. doi: 10.1109/TMI.2020.3000949. Epub 2020 Oct 28.

引用本文的文献

本文引用的文献

2
Deep learning and radiomics in precision medicine.精准医学中的深度学习与影像组学
Expert Rev Precis Med Drug Dev. 2019;4(2):59-72. doi: 10.1080/23808993.2019.1585805. Epub 2019 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验