Suppr超能文献

证据积累及相关的与错误有关的大脑活动作为新兴成年期物质使用的计算 informed 前瞻性预测指标。 注:这里“computationally-informed”不太明确准确意思,可能是“基于计算的”之类,整体译文可能稍显生硬,但按要求忠实翻译了。

Evidence accumulation and associated error-related brain activity as computationally-informed prospective predictors of substance use in emerging adulthood.

作者信息

Weigard Alexander S, Brislin Sarah J, Cope Lora M, Hardee Jillian E, Martz Meghan E, Ly Alexander, Zucker Robert A, Sripada Chandra, Heitzeg Mary M

机构信息

Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA.

Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Psychopharmacology (Berl). 2021 Sep;238(9):2629-2644. doi: 10.1007/s00213-021-05885-w. Epub 2021 Jun 25.

Abstract

RATIONALE

Substance use peaks during the developmental period known as emerging adulthood (ages 18-25), but not every individual who uses substances during this period engages in frequent or problematic use. Although individual differences in neurocognition appear to predict use severity, mechanistic neurocognitive risk factors with clear links to both behavior and neural circuitry have yet to be identified. Here, we aim to do so with an approach rooted in computational psychiatry, an emerging field in which formal models are used to identify candidate biobehavioral dimensions that confer risk for psychopathology.

OBJECTIVES

We test whether lower efficiency of evidence accumulation (EEA), a computationally characterized individual difference variable that drives performance on the go/no-go and other neurocognitive tasks, is a risk factor for substance use in emerging adults.

METHODS AND RESULTS

In an fMRI substudy within a sociobehavioral longitudinal study (n = 106), we find that lower EEA and reductions in a robust neural-level correlate of EEA (error-related activations in salience network structures) measured at ages 18-21 are both prospectively related to greater substance use during ages 22-26, even after adjusting for other well-known risk factors. Results from Bayesian model comparisons corroborated inferences from conventional hypothesis testing and provided evidence that both EEA and its neuroimaging correlates contain unique predictive information about substance use involvement.

CONCLUSIONS

These findings highlight EEA as a computationally characterized neurocognitive risk factor for substance use during a critical developmental period, with clear links to both neuroimaging measures and well-established formal theories of brain function.

摘要

理论依据

物质使用在被称为成年初期(18 - 25岁)的发育阶段达到峰值,但并非在此期间使用物质的每个人都会频繁使用或出现问题性使用。尽管神经认知方面的个体差异似乎可以预测使用的严重程度,但尚未确定与行为和神经回路都有明确联系的机制性神经认知风险因素。在此,我们旨在通过一种基于计算精神病学的方法来确定这些因素,计算精神病学是一个新兴领域,其中使用形式模型来识别赋予精神病理学风险的候选生物行为维度。

目的

我们测试证据积累效率(EEA)较低这一计算特征化的个体差异变量是否是成年初期物质使用的风险因素,EEA驱动着对去/不去及其他神经认知任务的表现。

方法与结果

在一项社会行为纵向研究中的功能磁共振成像子研究(n = 106)中,我们发现18 - 21岁时较低的EEA以及在EEA的一个强大神经水平相关指标(显著网络结构中与错误相关的激活)的降低,即使在调整了其他众所周知的风险因素后,都与22 - 26岁期间更多的物质使用存在前瞻性关联。贝叶斯模型比较的结果证实了传统假设检验的推断,并提供证据表明EEA及其神经影像学相关指标都包含关于物质使用参与情况的独特预测信息。

结论

这些发现突出了EEA作为成年初期物质使用的一种计算特征化神经认知风险因素,与神经影像学测量以及成熟的脑功能形式理论都有明确联系。

相似文献

1
Evidence accumulation and associated error-related brain activity as computationally-informed prospective predictors of substance use in emerging adulthood.
Psychopharmacology (Berl). 2021 Sep;238(9):2629-2644. doi: 10.1007/s00213-021-05885-w. Epub 2021 Jun 25.
2
Impaired Evidence Accumulation as a Transdiagnostic Vulnerability Factor in Psychopathology.
Front Psychiatry. 2021 Feb 17;12:627179. doi: 10.3389/fpsyt.2021.627179. eCollection 2021.
4
Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use.
Brain. 2015 Nov;138(Pt 11):3413-26. doi: 10.1093/brain/awv246. Epub 2015 Sep 3.
5
Neural predictors of alcohol use and psychopathology symptoms in adolescents.
Dev Psychopathol. 2016 Nov;28(4pt1):1209-1216. doi: 10.1017/S0954579416000766.
6
Task-general efficiency of evidence accumulation as a computationally-defined neurocognitive trait: Implications for clinical neuroscience.
Biol Psychiatry Glob Open Sci. 2021 Jun;1(1):5-15. doi: 10.1016/j.bpsgos.2021.02.001. Epub 2021 Mar 13.
7
Early Sexual Trauma Exposure and Neural Response Inhibition in Adolescence and Young Adults: Trajectories of Frontal Theta Oscillations During a Go/No-Go Task.
J Am Acad Child Adolesc Psychiatry. 2019 Feb;58(2):242-255.e2. doi: 10.1016/j.jaac.2018.07.905. Epub 2018 Dec 20.
9
Meta-analysis and review of functional neuroimaging differences underlying adolescent vulnerability to substance use.
Neuroimage. 2020 Apr 1;209:116476. doi: 10.1016/j.neuroimage.2019.116476. Epub 2019 Dec 23.
10
Psychosocial and neural indicators of resilience among youth with a family history of substance use disorder.
Drug Alcohol Depend. 2018 Apr 1;185:198-206. doi: 10.1016/j.drugalcdep.2017.12.015. Epub 2018 Feb 11.

引用本文的文献

2
Sex differences in distributed error-related neural activation in problem-drinking young adults.
Drug Alcohol Depend. 2024 Oct 1;263:112421. doi: 10.1016/j.drugalcdep.2024.112421. Epub 2024 Aug 22.
3
Sex differences in the prospective association of excessively long reaction times and hazardous cannabis use at six months.
Addict Behav Rep. 2024 Jun 19;20:100558. doi: 10.1016/j.abrep.2024.100558. eCollection 2024 Dec.
4
Flexible adaptation of task-positive brain networks predicts efficiency of evidence accumulation.
Commun Biol. 2024 Jul 2;7(1):801. doi: 10.1038/s42003-024-06506-w.
6
Candidate biomarkers in psychiatric disorders: state of the field.
World Psychiatry. 2023 Jun;22(2):236-262. doi: 10.1002/wps.21078.
7
Neural Correlates of the p Factor in Adolescence: Cognitive Control With and Without Enhanced Positive Affective Demands.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Jan;9(1):30-40. doi: 10.1016/j.bpsc.2023.03.012. Epub 2023 Apr 14.
8
Task-general efficiency of evidence accumulation as a computationally-defined neurocognitive trait: Implications for clinical neuroscience.
Biol Psychiatry Glob Open Sci. 2021 Jun;1(1):5-15. doi: 10.1016/j.bpsgos.2021.02.001. Epub 2021 Mar 13.
10
Charting brain growth and aging at high spatial precision.
Elife. 2022 Feb 1;11:e72904. doi: 10.7554/eLife.72904.

本文引用的文献

1
Why many studies of individual differences with inhibition tasks may not localize correlations.
Psychon Bull Rev. 2023 Dec;30(6):2049-2066. doi: 10.3758/s13423-023-02293-3. Epub 2023 Jul 5.
2
Diffusion modeling and intelligence: Drift rates show both domain-general and domain-specific relations with intelligence.
J Exp Psychol Gen. 2020 Dec;149(12):2207-2249. doi: 10.1037/xge0000774. Epub 2020 May 7.
3
Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises.
Biol Psychiatry. 2020 Dec 1;88(11):818-828. doi: 10.1016/j.biopsych.2020.02.016. Epub 2020 Feb 27.
4
Quantifying the benefits of using decision models with response time and accuracy data.
Behav Res Methods. 2020 Oct;52(5):2142-2155. doi: 10.3758/s13428-020-01372-w. Epub 2020 Mar 30.
5
Cognitive Modeling Informs Interpretation of Go/No-Go Task-Related Neural Activations and Their Links to Externalizing Psychopathology.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 May;5(5):530-541. doi: 10.1016/j.bpsc.2019.11.013. Epub 2019 Dec 10.
6
Uncovering the structure of self-regulation through data-driven ontology discovery.
Nat Commun. 2019 May 24;10(1):2319. doi: 10.1038/s41467-019-10301-1.
7
Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors.
Neuroimage. 2019 Aug 15;197:212-223. doi: 10.1016/j.neuroimage.2019.04.060. Epub 2019 Apr 27.
8
The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies.
Psychol Bull. 2018 Nov;144(11):1147-1185. doi: 10.1037/bul0000160. Epub 2018 Aug 6.
10
Recruiting the ABCD sample: Design considerations and procedures.
Dev Cogn Neurosci. 2018 Aug;32:16-22. doi: 10.1016/j.dcn.2018.04.004. Epub 2018 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验