Weigard Alexander S, Brislin Sarah J, Cope Lora M, Hardee Jillian E, Martz Meghan E, Ly Alexander, Zucker Robert A, Sripada Chandra, Heitzeg Mary M
Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA.
Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands.
Psychopharmacology (Berl). 2021 Sep;238(9):2629-2644. doi: 10.1007/s00213-021-05885-w. Epub 2021 Jun 25.
Substance use peaks during the developmental period known as emerging adulthood (ages 18-25), but not every individual who uses substances during this period engages in frequent or problematic use. Although individual differences in neurocognition appear to predict use severity, mechanistic neurocognitive risk factors with clear links to both behavior and neural circuitry have yet to be identified. Here, we aim to do so with an approach rooted in computational psychiatry, an emerging field in which formal models are used to identify candidate biobehavioral dimensions that confer risk for psychopathology.
We test whether lower efficiency of evidence accumulation (EEA), a computationally characterized individual difference variable that drives performance on the go/no-go and other neurocognitive tasks, is a risk factor for substance use in emerging adults.
In an fMRI substudy within a sociobehavioral longitudinal study (n = 106), we find that lower EEA and reductions in a robust neural-level correlate of EEA (error-related activations in salience network structures) measured at ages 18-21 are both prospectively related to greater substance use during ages 22-26, even after adjusting for other well-known risk factors. Results from Bayesian model comparisons corroborated inferences from conventional hypothesis testing and provided evidence that both EEA and its neuroimaging correlates contain unique predictive information about substance use involvement.
These findings highlight EEA as a computationally characterized neurocognitive risk factor for substance use during a critical developmental period, with clear links to both neuroimaging measures and well-established formal theories of brain function.
物质使用在被称为成年初期(18 - 25岁)的发育阶段达到峰值,但并非在此期间使用物质的每个人都会频繁使用或出现问题性使用。尽管神经认知方面的个体差异似乎可以预测使用的严重程度,但尚未确定与行为和神经回路都有明确联系的机制性神经认知风险因素。在此,我们旨在通过一种基于计算精神病学的方法来确定这些因素,计算精神病学是一个新兴领域,其中使用形式模型来识别赋予精神病理学风险的候选生物行为维度。
我们测试证据积累效率(EEA)较低这一计算特征化的个体差异变量是否是成年初期物质使用的风险因素,EEA驱动着对去/不去及其他神经认知任务的表现。
在一项社会行为纵向研究中的功能磁共振成像子研究(n = 106)中,我们发现18 - 21岁时较低的EEA以及在EEA的一个强大神经水平相关指标(显著网络结构中与错误相关的激活)的降低,即使在调整了其他众所周知的风险因素后,都与22 - 26岁期间更多的物质使用存在前瞻性关联。贝叶斯模型比较的结果证实了传统假设检验的推断,并提供证据表明EEA及其神经影像学相关指标都包含关于物质使用参与情况的独特预测信息。
这些发现突出了EEA作为成年初期物质使用的一种计算特征化神经认知风险因素,与神经影像学测量以及成熟的脑功能形式理论都有明确联系。