Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, United States.
Electrical and Computer Engineering Department, University of Rochester, University of Rochester, Rochester, NY, United States.
J Biomech. 2021 Aug 26;125:110547. doi: 10.1016/j.jbiomech.2021.110547. Epub 2021 Jun 13.
Markerless motion capture using deep learning approaches have potential to revolutionize the field of biomechanics by allowing researchers to collect data outside of the laboratory environment, yet there remain questions regarding the accuracy and ease of use of these approaches. The purpose of this study was to apply a markerless motion capture approach to extract lower limb angles in the sagittal plane during the vertical jump and to evaluate agreement between the custom trained model and gold standard motion capture. We performed this study using a large open source data set (N = 84) that included synchronized commercial video and gold standard motion capture. We split these data into a training set for model development (n = 69) and test set to evaluate capture performance relative to gold standard motion capture using coefficient of multiple correlations (CMC) (n = 15). We found very strong agreement between the custom trained markerless approach and marker-based motion capture within the test set across the entire movement (CMC > 0.991, RMSE < 3.22°), with at least strong CMC values across all trials for the hip (0.853 ± 0.23), knee (0.963 ± 0.471), and ankle (0.970 ± 0.055). The strong agreement between markerless and marker-based motion capture provides evidence that markerless motion capture is a viable tool to extend data collection to outside of the laboratory. As biomechanical research struggles with representative sampling practices, markerless motion capture has potential to transform biomechanical research away from traditional laboratory settings into venues convenient to populations that are under sampled without sacrificing measurement fidelity.
使用深度学习方法进行无标记运动捕捉有可能彻底改变生物力学领域,使研究人员能够在实验室环境之外收集数据,但这些方法的准确性和易用性仍存在疑问。本研究的目的是应用无标记运动捕捉方法来提取垂直跳跃过程中矢状面下肢角度,并评估定制训练模型与黄金标准运动捕捉之间的一致性。我们使用包含同步商业视频和黄金标准运动捕捉的大型开源数据集(N=84)进行了这项研究。我们将这些数据分为模型开发的训练集(n=69)和测试集,以使用多重相关系数(CMC)评估相对于黄金标准运动捕捉的捕捉性能(n=15)。我们发现,在整个运动过程中,定制的无标记方法与基于标记的运动捕捉之间在测试集中具有非常强的一致性(CMC>0.991,RMSE<3.22°),对于所有试验,髋关节(0.853±0.23)、膝关节(0.963±0.471)和踝关节(0.970±0.055)至少具有强的 CMC 值。无标记和基于标记的运动捕捉之间的强一致性提供了证据,表明无标记运动捕捉是一种可行的工具,可以将数据收集扩展到实验室之外。由于生物力学研究在代表性抽样实践方面存在困难,无标记运动捕捉有可能将生物力学研究从传统实验室环境转变为方便对代表性不足的人群进行研究的场所,而不会牺牲测量保真度。
Scand J Med Sci Sports. 2023-6
J Med Ultrason (2001). 2025-8-11
Front Sports Act Living. 2024-8-27
JMIR Mhealth Uhealth. 2024-5-6
Front Sports Act Living. 2020-5-27
Clin Orthop Relat Res. 2021-3-1
J Biomech. 2020-10-9
Gait Posture. 2020-6
Clin Orthop Relat Res. 2020-5
Ann Biomed Eng. 2020-6
Curr Opin Neurobiol. 2019-11-29