Suppr超能文献

走出实验室:无标记运动捕捉技术准确量化垂直跳中的矢状面运动学。

Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump.

机构信息

Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, United States.

Electrical and Computer Engineering Department, University of Rochester, University of Rochester, Rochester, NY, United States.

出版信息

J Biomech. 2021 Aug 26;125:110547. doi: 10.1016/j.jbiomech.2021.110547. Epub 2021 Jun 13.

Abstract

Markerless motion capture using deep learning approaches have potential to revolutionize the field of biomechanics by allowing researchers to collect data outside of the laboratory environment, yet there remain questions regarding the accuracy and ease of use of these approaches. The purpose of this study was to apply a markerless motion capture approach to extract lower limb angles in the sagittal plane during the vertical jump and to evaluate agreement between the custom trained model and gold standard motion capture. We performed this study using a large open source data set (N = 84) that included synchronized commercial video and gold standard motion capture. We split these data into a training set for model development (n = 69) and test set to evaluate capture performance relative to gold standard motion capture using coefficient of multiple correlations (CMC) (n = 15). We found very strong agreement between the custom trained markerless approach and marker-based motion capture within the test set across the entire movement (CMC > 0.991, RMSE < 3.22°), with at least strong CMC values across all trials for the hip (0.853 ± 0.23), knee (0.963 ± 0.471), and ankle (0.970 ± 0.055). The strong agreement between markerless and marker-based motion capture provides evidence that markerless motion capture is a viable tool to extend data collection to outside of the laboratory. As biomechanical research struggles with representative sampling practices, markerless motion capture has potential to transform biomechanical research away from traditional laboratory settings into venues convenient to populations that are under sampled without sacrificing measurement fidelity.

摘要

使用深度学习方法进行无标记运动捕捉有可能彻底改变生物力学领域,使研究人员能够在实验室环境之外收集数据,但这些方法的准确性和易用性仍存在疑问。本研究的目的是应用无标记运动捕捉方法来提取垂直跳跃过程中矢状面下肢角度,并评估定制训练模型与黄金标准运动捕捉之间的一致性。我们使用包含同步商业视频和黄金标准运动捕捉的大型开源数据集(N=84)进行了这项研究。我们将这些数据分为模型开发的训练集(n=69)和测试集,以使用多重相关系数(CMC)评估相对于黄金标准运动捕捉的捕捉性能(n=15)。我们发现,在整个运动过程中,定制的无标记方法与基于标记的运动捕捉之间在测试集中具有非常强的一致性(CMC>0.991,RMSE<3.22°),对于所有试验,髋关节(0.853±0.23)、膝关节(0.963±0.471)和踝关节(0.970±0.055)至少具有强的 CMC 值。无标记和基于标记的运动捕捉之间的强一致性提供了证据,表明无标记运动捕捉是一种可行的工具,可以将数据收集扩展到实验室之外。由于生物力学研究在代表性抽样实践方面存在困难,无标记运动捕捉有可能将生物力学研究从传统实验室环境转变为方便对代表性不足的人群进行研究的场所,而不会牺牲测量保真度。

相似文献

1
Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump.
J Biomech. 2021 Aug 26;125:110547. doi: 10.1016/j.jbiomech.2021.110547. Epub 2021 Jun 13.
2
Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks.
J Biomech. 2024 Jun;171:112200. doi: 10.1016/j.jbiomech.2024.112200. Epub 2024 Jun 19.
4
Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
J Biomech. 2021 Oct 11;127:110665. doi: 10.1016/j.jbiomech.2021.110665. Epub 2021 Aug 3.
5
6
The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics.
Scand J Med Sci Sports. 2023 Jun;33(6):966-978. doi: 10.1111/sms.14319. Epub 2023 Feb 9.
8
The development and evaluation of a fully automated markerless motion capture workflow.
J Biomech. 2022 Nov;144:111338. doi: 10.1016/j.jbiomech.2022.111338. Epub 2022 Oct 2.
9
Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
PeerJ. 2022 Feb 25;10:e12995. doi: 10.7717/peerj.12995. eCollection 2022.
10
Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
J Biomech. 2014 Jan 22;47(2):587-91. doi: 10.1016/j.jbiomech.2013.11.031. Epub 2013 Nov 25.

引用本文的文献

1
Decoding fetal motion in 4D ultrasound with DeepLabCut.
J Med Ultrason (2001). 2025 Aug 11. doi: 10.1007/s10396-025-01557-w.
2
Accurate Tracking of Locomotory Kinematics in Mice Moving Freely in Three-Dimensional Environments.
eNeuro. 2025 Jun 25;12(6). doi: 10.1523/ENEURO.0045-25.2025. Print 2025 Jun.
3
DeepLabCut custom-trained model and the refinement function for gait analysis.
Sci Rep. 2025 Jan 18;15(1):2364. doi: 10.1038/s41598-025-85591-1.
4
A comprehensive analysis of the machine learning pose estimation models used in human movement and posture analyses: A narrative review.
Heliyon. 2024 Oct 30;10(21):e39977. doi: 10.1016/j.heliyon.2024.e39977. eCollection 2024 Nov 15.
5
Reliability and validity of knee valgus angle calculation at single-leg drop landing by posture estimation using machine learning.
Heliyon. 2024 Aug 23;10(17):e36338. doi: 10.1016/j.heliyon.2024.e36338. eCollection 2024 Sep 15.
6
Biological reliability of a movement analysis assessment using a markerless motion capture system.
Front Sports Act Living. 2024 Aug 27;6:1417965. doi: 10.3389/fspor.2024.1417965. eCollection 2024.

本文引用的文献

1
MoVi: A large multi-purpose human motion and video dataset.
PLoS One. 2021 Jun 17;16(6):e0253157. doi: 10.1371/journal.pone.0253157. eCollection 2021.
3
Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras.
Front Sports Act Living. 2020 May 27;2:50. doi: 10.3389/fspor.2020.00050. eCollection 2020.
4
Dissemination and implementation research in sports and exercise medicine and sports physical therapy: translating evidence to practice and policy.
BMJ Open Sport Exerc Med. 2020 Nov 13;6(1):e000974. doi: 10.1136/bmjsem-2020-000974. eCollection 2020.
5
Is Geographic Socioeconomic Disadvantage Associated with the Rate of THA in Medicare-aged Patients?
Clin Orthop Relat Res. 2021 Mar 1;479(3):575-585. doi: 10.1097/CORR.0000000000001493.
6
Novel isodamping dynamometer accurately measures plantar flexor function.
J Biomech. 2020 Oct 9;111:110015. doi: 10.1016/j.jbiomech.2020.110015. Epub 2020 Aug 28.
7
A simple instrumented insole algorithm to estimate plantar flexion moments.
Gait Posture. 2020 Jun;79:92-95. doi: 10.1016/j.gaitpost.2020.04.016. Epub 2020 Apr 21.
8
Are There Nationwide Socioeconomic and Demographic Disparities in the Use of Outpatient Orthopaedic Services?
Clin Orthop Relat Res. 2020 May;478(5):979-989. doi: 10.1097/CORR.0000000000001168.
9
Fifty Years of Biomedical Engineering Undergraduate Education.
Ann Biomed Eng. 2020 Jun;48(6):1590-1615. doi: 10.1007/s10439-020-02494-0. Epub 2020 Apr 6.
10
Deep learning tools for the measurement of animal behavior in neuroscience.
Curr Opin Neurobiol. 2020 Feb;60:1-11. doi: 10.1016/j.conb.2019.10.008. Epub 2019 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验