Department of Laboratory Medicine, Karolinska Institutet (KI), Huddinge, Sweden.
Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Front Immunol. 2021 Jun 10;12:689472. doi: 10.3389/fimmu.2021.689472. eCollection 2021.
Since the first clinical report in 2013, inhibitors of the intracellular kinase BTK (BTKi) have profoundly altered the treatment paradigm of B cell malignancies, replacing chemotherapy with targeted agents in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström's macroglobulinemia. There are over 20 BTKi, both irreversible and reversible, in clinical development. While loss-of-function (LoF) mutations in the gene cause the immunodeficiency X-linked agammaglobulinemia, neither inherited, nor somatic driver mutations are known. Instead, BTKi-sensitive malignancies are addicted to BTK. BTK is activated by upstream surface receptors, especially the B cell receptor (BCR) but also by chemokine receptors, and adhesion molecules regulating B cell homing. Consequently, BTKi therapy abrogates BCR-driven proliferation and the tissue homing capacity of the malignant cells, which are being redistributed into peripheral blood. BTKi resistance can develop over time, especially in MCL and high-risk CLL patients. Frequently, resistance mutations affect the BTKi binding-site, cysteine 481, thereby reducing drug binding. Less common are gain-of-function (GoF) mutations in downstream signaling components, including phospholipase Cγ2 (PLCγ2). In a subset of patients, mechanisms outside of the BCR pathway, related e.g. to resistance to apoptosis were described. BCR signaling depends on many proteins including SYK, BTK, PI3K; still based on the resistance pattern, BTKi therapy only selects GoF alterations in the NF-κB arm, whereas an inhibitor of the p110δ subunit of PI3K instead selects resistance mutations in the RAS-MAP kinase pathway. BTK and PLCγ2 resistance mutations highlight BTK's non-redundant role in BCR-mediated NF-κB activation. Of note, mutations affecting BTK tend to generate clone sizes larger than alterations in PLCγ2. This infers that BTK signaling may go beyond the PLCγ2-regulated NF-κB and NFAT arms. Collectively, when comparing the primary and acquired mutation spectrum in BTKi-sensitive malignancies with the phenotype of the corresponding germline alterations, we find that certain observations do not readily fit with the existing models of BCR signaling.
自 2013 年首例临床报告以来,细胞内激酶 BTK(BTKi)抑制剂极大地改变了 B 细胞恶性肿瘤的治疗模式,在慢性淋巴细胞白血病(CLL)、套细胞淋巴瘤(MCL)和华氏巨球蛋白血症患者中用靶向药物替代了化疗。目前有 20 多种 BTKi 正在临床开发中,包括不可逆和可逆抑制剂。虽然 基因的失活(LoF)突变导致免疫缺陷性 X 连锁无丙种球蛋白血症,但目前既不知道遗传性,也不知道体细胞驱动突变。相反,BTKi 敏感的恶性肿瘤依赖于 BTK。BTK 被上游表面受体激活,特别是 B 细胞受体(BCR),但也被趋化因子受体和调节 B 细胞归巢的黏附分子激活。因此,BTKi 治疗会阻断 BCR 驱动的增殖和恶性细胞的组织归巢能力,使这些细胞重新分布到外周血中。BTKi 耐药会随着时间的推移而发展,尤其是在 MCL 和高危 CLL 患者中。耐药突变通常会影响 BTKi 的结合位点半胱氨酸 481,从而降低药物结合。较少见的是下游信号转导成分的获得性功能(GoF)突变,包括磷脂酶 Cγ2(PLCγ2)。在一部分患者中,还描述了 BCR 途径以外的机制,例如与抗凋亡相关的机制。BCR 信号依赖于许多蛋白质,包括 SYK、BTK、PI3K;仍基于耐药模式,BTKi 治疗仅选择 NF-κB 臂中的 GoF 改变,而 PI3K p110δ 亚基抑制剂则选择 RAS-MAP 激酶途径中的耐药突变。BTK 和 PLCγ2 耐药突变突出了 BTK 在 BCR 介导的 NF-κB 激活中的非冗余作用。值得注意的是,影响 BTK 的突变往往会产生比 PLCγ2 改变更大的克隆大小。这推断 BTK 信号可能超出了 PLCγ2 调节的 NF-κB 和 NFAT 臂。总的来说,当将 BTKi 敏感恶性肿瘤的原发性和获得性突变谱与相应种系改变的表型进行比较时,我们发现某些观察结果与 BCR 信号的现有模型不太吻合。