Suppr超能文献

相似文献

1
Combinatorial Approach for Exploring Conformational Space and Activation Barriers in Computer-Aided Enzyme Design.
ACS Catal. 2020 Jun 5;10(11):6002-6012. doi: 10.1021/acscatal.0c01206. Epub 2020 Apr 27.
3
Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16869-74. doi: 10.1073/pnas.1010381107. Epub 2010 Sep 9.
4
Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07.
Biochim Biophys Acta. 2013 May;1834(5):908-17. doi: 10.1016/j.bbapap.2013.01.005. Epub 2013 Feb 1.
5
Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
Biochemistry. 2011 May 10;50(18):3849-58. doi: 10.1021/bi200063a. Epub 2011 Apr 15.
6
Computational site-directed mutagenesis of haloalkane dehalogenase in position 172.
Protein Eng. 1998 Oct;11(10):901-7. doi: 10.1093/protein/11.10.901.
7
Physics-based enzyme design: predicting binding affinity and catalytic activity.
Proteins. 2014 Dec;82(12):3397-409. doi: 10.1002/prot.24694. Epub 2014 Oct 30.
8
Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
J Mol Biol. 2011 Apr 1;407(3):391-412. doi: 10.1016/j.jmb.2011.01.041. Epub 2011 Jan 28.
9
Enhancing a enzyme activity by computationally-focused ultra-low-throughput screening.
Chem Sci. 2020 May 19;11(24):6134-6148. doi: 10.1039/d0sc01935f. eCollection 2020 Jun 28.
10
The evolution of multiple active site configurations in a designed enzyme.
Nat Commun. 2018 Sep 25;9(1):3900. doi: 10.1038/s41467-018-06305-y.

引用本文的文献

3
Enzyme Engineering Strategies for the Bioenhancement of L-Asparaginase Used as a Biopharmaceutical.
BioDrugs. 2023 Nov;37(6):793-811. doi: 10.1007/s40259-023-00622-5. Epub 2023 Sep 12.
4
Transient water wires mediate selective proton transport in designed channel proteins.
Nat Chem. 2023 Jul;15(7):1012-1021. doi: 10.1038/s41557-023-01210-4. Epub 2023 Jun 12.
5
Redesigning Enzymes for Biocatalysis: Exploiting Structural Understanding for Improved Selectivity.
Front Mol Biosci. 2022 Jul 22;9:908285. doi: 10.3389/fmolb.2022.908285. eCollection 2022.
6
Enhancing computational enzyme design by a maximum entropy strategy.
Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2122355119.

本文引用的文献

1
Editorial: Challenges in Computational Enzymology.
Front Chem. 2019 Oct 22;7:690. doi: 10.3389/fchem.2019.00690. eCollection 2019.
2
Machine learning-assisted directed protein evolution with combinatorial libraries.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8852-8858. doi: 10.1073/pnas.1901979116. Epub 2019 Apr 12.
3
Exploring the challenges of computational enzyme design by rebuilding the active site of a dehalogenase.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):389-394. doi: 10.1073/pnas.1804979115. Epub 2018 Dec 26.
4
De novo design of a non-local β-sheet protein with high stability and accuracy.
Nat Struct Mol Biol. 2018 Nov;25(11):1028-1034. doi: 10.1038/s41594-018-0141-6. Epub 2018 Oct 29.
5
ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature.
BMC Bioinformatics. 2018 Sep 21;19(1):334. doi: 10.1186/s12859-018-2368-y.
7
Directed Evolution: Bringing New Chemistry to Life.
Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4143-4148. doi: 10.1002/anie.201708408. Epub 2017 Nov 28.
8
Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
Proteins. 2017 Dec;85(12):2157-2161. doi: 10.1002/prot.25381. Epub 2017 Sep 30.
9
The coming of age of de novo protein design.
Nature. 2016 Sep 15;537(7620):320-7. doi: 10.1038/nature19946.
10
Epistasis in protein evolution.
Protein Sci. 2016 Jul;25(7):1204-18. doi: 10.1002/pro.2897. Epub 2016 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验