Suppr超能文献

代谢工程中的模块化优化。

Modular optimization in metabolic engineering.

机构信息

Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.

出版信息

Crit Rev Biochem Mol Biol. 2021 Dec;56(6):587-602. doi: 10.1080/10409238.2021.1937928. Epub 2021 Jun 27.

Abstract

There is an increasing demand for bioproducts produced by metabolically engineered microbes, such as pharmaceuticals, biofuels, biochemicals and other high value compounds. In order to meet this demand, modular optimization, the optimizing of subsections instead of the whole system, has been adopted to engineer cells to overproduce products. Research into modularity has focused on traditional approaches such as DNA, RNA, and protein-level modularity of intercellular machinery, by optimizing metabolic pathways for enhanced production. While research into these traditional approaches continues, limitations such as scale-up and time cost hold them back from wider use, while at the same time there is a shift to more novel methods, such as moving from episomal expression to chromosomal integration. Recently, nontraditional approaches such as co-culture systems and cell-free metabolic engineering (CFME) are being investigated for modular optimization. Co-culture modularity looks to optimally divide the metabolic burden between different hosts. CFME seeks to modularly optimize metabolic pathways , both speeding up the design of such systems and eliminating the issues associated with live hosts. In this review we will examine both traditional and nontraditional approaches for modular optimization, examining recent developments and discussing issues and emerging solutions for future research in metabolic engineering.

摘要

人们对代谢工程微生物(如药品、生物燃料、生物化学物质和其他高价值化合物)生产的生物制品的需求日益增长。为了满足这一需求,模块化优化(优化子部分而不是整个系统)已被用于工程细胞以过量生产产品。模块化研究侧重于传统方法,如细胞间机制的 DNA、RNA 和蛋白质水平的模块化,通过优化代谢途径来提高产量。虽然对这些传统方法的研究仍在继续,但规模扩大和时间成本等限制因素阻碍了它们的广泛应用,同时也出现了更具创新性的方法,如从附加体表达转向染色体整合。最近,正在研究非传统方法,如共培养系统和无细胞代谢工程(CFME),以实现模块化优化。共培养模块化旨在在不同宿主之间最优地分配代谢负担。CFME 试图对代谢途径进行模块化优化,既加快了此类系统的设计速度,又消除了与活宿主相关的问题。在这篇综述中,我们将研究代谢工程中模块化优化的传统和非传统方法,考察最近的发展,并讨论未来研究中的问题和新兴解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验